Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
AJNR Am J Neuroradiol ; 45(4): 475-482, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453411

RESUMEN

BACKGROUND AND PURPOSE: Response on imaging is widely used to evaluate treatment efficacy in clinical trials of pediatric gliomas. While conventional criteria rely on 2D measurements, volumetric analysis may provide a more comprehensive response assessment. There is sparse research on the role of volumetrics in pediatric gliomas. Our purpose was to compare 2D and volumetric analysis with the assessment of neuroradiologists using the Brain Tumor Reporting and Data System (BT-RADS) in BRAF V600E-mutant pediatric gliomas. MATERIALS AND METHODS: Manual volumetric segmentations of whole and solid tumors were compared with 2D measurements in 31 participants (292 follow-up studies) in the Pacific Pediatric Neuro-Oncology Consortium 002 trial (NCT01748149). Two neuroradiologists evaluated responses using BT-RADS. Receiver operating characteristic analysis compared classification performance of 2D and volumetrics for partial response. Agreement between volumetric and 2D mathematically modeled longitudinal trajectories for 25 participants was determined using the model-estimated time to best response. RESULTS: Of 31 participants, 20 had partial responses according to BT-RADS criteria. Receiver operating characteristic curves for the classification of partial responders at the time of first detection (median = 2 months) yielded an area under the curve of 0.84 (95% CI, 0.69-0.99) for 2D area, 0.91 (95% CI, 0.80-1.00) for whole-volume, and 0.92 (95% CI, 0.82-1.00) for solid volume change. There was no significant difference in the area under the curve between 2D and solid (P = .34) or whole volume (P = .39). There was no significant correlation in model-estimated time to best response (ρ = 0.39, P >.05) between 2D and whole-volume trajectories. Eight of the 25 participants had a difference of ≥90 days in transition from partial response to stable disease between their 2D and whole-volume modeled trajectories. CONCLUSIONS: Although there was no overall difference between volumetrics and 2D in classifying partial response assessment using BT-RADS, further prospective studies will be critical to elucidate how the observed differences in tumor 2D and volumetric trajectories affect clinical decision-making and outcomes in some individuals.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Proteínas Proto-Oncogénicas B-raf , Resultado del Tratamiento
2.
Sci Data ; 11(1): 254, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424079

RESUMEN

Resection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.


Asunto(s)
Neoplasias Encefálicas , Humanos , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Irradiación Craneana/efectos adversos , Irradiación Craneana/métodos , Imagen por Resonancia Magnética , Radiocirugia
3.
Neurooncol Adv ; 6(1): vdad172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38221978

RESUMEN

Background: Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods. Methods: An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images. Results: There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, P = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, P = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD. Conclusions: Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.

4.
Med Phys ; 51(4): 3045-3052, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38064591

RESUMEN

BACKGROUND: Recent studies have shown a clear relationship between absorbed dose and tumor response to treatment after hepatic radioembolization. These findings help to create more personalized treatment planning and dosimetry. However, crucial to this goal is the ability to predict the dose distribution prior to treatment. The microsphere distribution is ultimately determined by (i) the hepatic vasculature and the resulting blood flow dynamics and (ii) the catheter position. PURPOSE: To show that pretreatment, intra-procedural imaging of blood flow patterns, as quantified by catheter-directed intra-arterial contrast enhancement, correlate with posttreatment microsphere accumulation and, consequently, absorbed dose. MATERIALS AND METHODS: Patients who participated in a clinical trial (NCT01177007) and for whom both a pretreatment dual-phase contrast-enhanced cone-beam CT (CBCT) and a posttreatment 90Y PET/CT scan were available were included in this retrospective study. Tumors and perfused volumes were manually delineated on the CBCT by an experienced radiologist. The mean, sum, and standard deviation of the voxels in each volume were recorded. The delineations were transferred to the PET-based absorbed dose maps by coregistration of the corresponding CTs. Linear multiple regression was used to correlate pretreatment CBCT enhancement to posttreatment 90Y PET/CT-based absorbed dose in each region. Leave-one-out cross-validation and Bland-Altman analyses were performed on the predicted versus measured absorbed doses. RESULTS: Nine patients, with a total of 23 tumors were included. All presented with hepatocellular carcinoma (HCC). Visually, all patients had a clear correspondence between CBCT enhancement and absorbed dose. The correlation between CBCT enhancement and posttherapy absorbed tumor dose based was strong (R2 = 0.91), and moderate for the non-tumor liver tissue (R2 = 0.61). Limits of agreement were approximately ±55 Gray for tumor tissue. CONCLUSION: There is a linear relationship between pretreatment blood dynamics in HCC tumors and posttreatment absorbed dose, which, if shown to be generalizable, allows for pretreatment tumor absorbed dose prediction.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Radioisótopos de Itrio/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos , Embolización Terapéutica/métodos , Microesferas
5.
Sci Rep ; 13(1): 22942, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135704

RESUMEN

Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine patients undergoing GBM resection with CDKN2A status determined by whole-exome sequencing were included. GBMs on magnetic resonance images were automatically 3D segmented using deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs. 30%, p = 0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKN2A alteration (OR: 4.3; 95% CI 1.5-12.1; p < 0.001). We developed a novel integrated PACS informatics platform for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or subependymal invasion. These imaging features may allow noninvasive identification of CDKN2A allele status.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Homocigoto , Eliminación de Secuencia , Glioma/patología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Informática , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación
6.
ArXiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744461

RESUMEN

Resection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires precise identification and delineation of BM. While many AI algorithms have been developed for this purpose, their clinical adoption has been limited due to poor model performance in the clinical setting. Major reasons for non-generalizable algorithms are the limitations in the datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models to improve generalizability. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and whole tumor (including peritumoral edema) 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging feature information. We used a streamlined approach to database-building leveraging a PACS-integrated segmentation workflow.

7.
AJNR Am J Neuroradiol ; 44(10): 1126-1134, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37770204

RESUMEN

BACKGROUND: The molecular profile of gliomas is a prognostic indicator for survival, driving clinical decision-making for treatment. Pathology-based molecular diagnosis is challenging because of the invasiveness of the procedure, exclusion from neoadjuvant therapy options, and the heterogeneous nature of the tumor. PURPOSE: We performed a systematic review of algorithms that predict molecular subtypes of gliomas from MR Imaging. DATA SOURCES: Data sources were Ovid Embase, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science. STUDY SELECTION: Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 12,318 abstracts were screened and 1323 underwent full-text review, with 85 articles meeting the inclusion criteria. DATA ANALYSIS: We compared prediction results from different machine learning approaches for predicting molecular subtypes of gliomas. Bias analysis was conducted for each study, following the Prediction model Risk Of Bias Assessment Tool (PROBAST) guidelines. DATA SYNTHESIS: Isocitrate dehydrogenase mutation status was reported with an area under the curve and accuracy of 0.88 and 85% in internal validation and 0.86 and 87% in limited external validation data sets, respectively. For the prediction of O6-methylguanine-DNA methyltransferase promoter methylation, the area under the curve and accuracy in internal validation data sets were 0.79 and 77%, and in limited external validation, 0.89 and 83%, respectively. PROBAST scoring demonstrated high bias in all articles. LIMITATIONS: The low number of external validation and studies with incomplete data resulted in unequal data analysis. Comparing the best prediction pipelines of each study may introduce bias. CONCLUSIONS: While the high area under the curve and accuracy for the prediction of molecular subtypes of gliomas are reported in internal and external validation data sets, limited use of external validation and the increased risk of bias in all articles may present obstacles for clinical translation of these techniques.


Asunto(s)
Glioma , Humanos , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Aprendizaje Automático , Pronóstico , Imagen por Resonancia Magnética/métodos , Mutación
8.
ArXiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37396600

RESUMEN

Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

9.
Clin Imaging ; 101: 200-205, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421715

RESUMEN

OBJECTIVE: To test the performance of a novel machine learning-based breast density tool. The tool utilizes a convolutional neural network to predict the BI-RADS based density assessment of a study. The clinical density assessments of 33,000 mammographic examinations (164,000 images) from one academic medical center (Site A) were used for training. MATERIALS AND METHODS: This was an IRB approved HIPAA compliant study performed at two academic medical centers. The validation data set was composed of 500 studies from one site (Site A) and 700 from another (Site B). At Site A, each study was assessed by three breast radiologists and the majority (consensus) assessment was used as truth. At Site B, if the tool agreed with the clinical reading, then it was considered to have correctly predicted the clinical reading. In cases where the tool and the clinical reading disagreed, then the study was evaluated by three radiologists and the consensus reading was used as the clinical reading. RESULTS: For the classification into the four categories of the Breast Imaging Reporting and Data System (BI-RADS®), the AI classifier had an accuracy of 84.6% at Site A and 89.7% at Site B. For binary classification (dense vs. non-dense), the AI classifier had an accuracy of 94.4% at Site A and 97.4% at Site B. In no case did the classifier disagree with the consensus reading by more than one category. CONCLUSIONS: The automated breast density tool showed high agreement with radiologists' assessments of breast density.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama , Humanos , Femenino , Mamografía/métodos , Mama/diagnóstico por imagen , Aprendizaje Automático , Neoplasias de la Mama/diagnóstico por imagen
10.
Sci Rep ; 13(1): 7579, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165035

RESUMEN

Tumor recurrence affects up to 70% of early-stage hepatocellular carcinoma (HCC) patients, depending on treatment option. Deep learning algorithms allow in-depth exploration of imaging data to discover imaging features that may be predictive of recurrence. This study explored the use of convolutional neural networks (CNN) to predict HCC recurrence in patients with early-stage HCC from pre-treatment magnetic resonance (MR) images. This retrospective study included 120 patients with early-stage HCC. Pre-treatment MR images were fed into a machine learning pipeline (VGG16 and XGBoost) to predict recurrence within six different time frames (range 1-6 years). Model performance was evaluated with the area under the receiver operating characteristic curves (AUC-ROC). After prediction, the model's clinical relevance was evaluated using Kaplan-Meier analysis with recurrence-free survival (RFS) as the endpoint. Of 120 patients, 44 had disease recurrence after therapy. Six different models performed with AUC values between 0.71 to 0.85. In Kaplan-Meier analysis, five of six models obtained statistical significance when predicting RFS (log-rank p < 0.05). Our proof-of-concept study indicates that deep learning algorithms can be utilized to predict early-stage HCC recurrence. Successful identification of high-risk recurrence candidates may help optimize follow-up imaging and improve long-term outcomes post-treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética , Aprendizaje Automático
11.
J Chem Inf Model ; 63(11): 3350-3368, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171216

RESUMEN

The cyclin-dependent protein kinases (CDKs) are protein-serine/threonine kinases with crucial effects on the regulation of cell cycle and transcription. CDKs can be a hallmark of cancer since their excessive expression could lead to impaired cell proliferation. However, the selectivity profile of most developed CDK inhibitors is not enough, which have hindered the therapeutic use of CDK inhibitors. In this study, we propose a multitask deep learning framework called BiLAT based on SMILES representation for the prediction of the inhibitory activity of molecules on eight CDK subtypes (CDK1, 2, 4-9). The framework is mainly composed of an improved bidirectional long short-term memory module BiLSTM and the encode layer of the Transformer framework. Additionally, the data enhancement method of SMILES enumeration is applied to improve the performance of the model. Compared with baseline predictive models based on three conventional machine learning methods and two multitask deep learning algorithms, BiLAT achieves the best performance with the highest average AUC, ACC, F1-score, and MCC values of 0.938, 0.894, 0.911, and 0.715 for the test set. Moreover, we constructed a targeted external data set CDK-Dec for the CDK family, which mainly contains bait values screened by 3D similarity with active compounds. This dataset was utilized in the subsequent evaluation of our model. It is worth mentioning that the BiLAT model is interpretable and can be used by chemists to design and synthesize compounds with improved activity. To further verify the generalization ability of the multitask BiLAT model, we also conducted another evaluation on three public datasets (Tox21, ClinTox, and SIDER). Compared with several currently popular models, BiLAT shows the best performance on two datasets. These results indicate that BiLAT is an effective tool for accelerating drug discovery.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Ciclo Celular , Neoplasias/tratamiento farmacológico , Algoritmos , Quinasa 2 Dependiente de la Ciclina
12.
Bioengineering (Basel) ; 10(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829675

RESUMEN

Deep-learning methods for auto-segmenting brain images either segment one slice of the image (2D), five consecutive slices of the image (2.5D), or an entire volume of the image (3D). Whether one approach is superior for auto-segmenting brain images is not known. We compared these three approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule networks, UNets, and nnUNets) to segment brain structures. We used 3430 brain MRIs, acquired in a multi-institutional study, to train and test our models. We used the following performance metrics: segmentation accuracy, performance with limited training data, required computational memory, and computational speed during training and deployment. The 3D, 2.5D, and 2D approaches respectively gave the highest to lowest Dice scores across all models. 3D models maintained higher Dice scores when the training set size was decreased from 3199 MRIs down to 60 MRIs. 3D models converged 20% to 40% faster during training and were 30% to 50% faster during deployment. However, 3D models require 20 times more computational memory compared to 2.5D or 2D models. This study showed that 3D models are more accurate, maintain better performance with limited training data, and are faster to train and deploy. However, 3D models require more computational memory compared to 2.5D or 2D models.

13.
Med Phys ; 50(8): e904-e945, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36710257

RESUMEN

This report reviews the image acquisition and reconstruction characteristics of C-arm Cone Beam Computed Tomography (C-arm CBCT) systems and provides guidance on quality control of C-arm systems with this volumetric imaging capability. The concepts of 3D image reconstruction, geometric calibration, image quality, and dosimetry covered in this report are also pertinent to CBCT for Image-Guided Radiation Therapy (IGRT). However, IGRT systems introduce a number of additional considerations, such as geometric alignment of the imaging at treatment isocenter, which are beyond the scope of the charge to the task group and the report. Section 1 provides an introduction to C-arm CBCT systems and reviews a variety of clinical applications. Section 2 briefly presents nomenclature specific or unique to these systems. A short review of C-arm fluoroscopy quality control (QC) in relation to 3D C-arm imaging is given in Section 3. Section 4 discusses system calibration, including geometric calibration and uniformity calibration. A review of the unique approaches and challenges to 3D reconstruction of data sets acquired by C-arm CBCT systems is give in Section 5. Sections 6 and 7 go in greater depth to address the performance assessment of C-arm CBCT units. First, Section 6 describes testing approaches and phantoms that may be used to evaluate image quality (spatial resolution and image noise and artifacts) and identifies several factors that affect image quality. Section 7 describes both free-in-air and in-phantom approaches to evaluating radiation dose indices. The methodologies described for assessing image quality and radiation dose may be used for annual constancy assessment and comparisons among different systems to help medical physicists determine when a system is not operating as expected. Baseline measurements taken either at installation or after a full preventative maintenance service call can also provide valuable data to help determine whether the performance of the system is acceptable. Collecting image quality and radiation dose data on existing phantoms used for CT image quality and radiation dose assessment, or on newly developed phantoms, will inform the development of performance criteria and standards. Phantom images are also useful for identifying and evaluating artifacts. In particular, comparing baseline data with those from current phantom images can reveal the need for system calibration before image artifacts are detected in clinical practice. Examples of artifacts are provided in Sections 4, 5, and 6.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Radiometría , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
14.
AJR Am J Roentgenol ; 220(2): 245-255, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35975886

RESUMEN

BACKGROUND. Posttreatment recurrence is an unpredictable complication after liver transplant for hepatocellular carcinoma (HCC) that is associated with poor survival. Biomarkers are needed to estimate recurrence risk before organ allocation. OBJECTIVE. This proof-of-concept study evaluated the use of machine learning (ML) to predict recurrence from pretreatment laboratory, clinical, and MRI data in patients with early-stage HCC initially eligible for liver transplant. METHODS. This retrospective study included 120 patients (88 men, 32 women; median age, 60.0 years) with early-stage HCC diagnosed who were initially eligible for liver transplant and underwent treatment by transplant, resection, or thermal ablation between June 2005 and March 2018. Patients underwent pretreatment MRI and posttreatment imaging surveillance. Imaging features were extracted from postcontrast phases of pretreatment MRI examinations using a pretrained convolutional neural network. Pretreatment clinical characteristics (including laboratory data) and extracted imaging features were integrated to develop three ML models (clinical model, imaging model, combined model) for predicting recurrence within six time frames ranging from 1 through 6 years after treatment. Kaplan-Meier analysis with time to recurrence as the endpoint was used to assess the clinical relevance of model predictions. RESULTS. Tumor recurred in 44 of 120 (36.7%) patients during follow-up. The three models predicted recurrence with AUCs across the six time frames of 0.60-0.78 (clinical model), 0.71-0.85 (imaging model), and 0.62-0.86 (combined model). The mean AUC was higher for the imaging model than the clinical model (0.76 vs 0.68, respectively; p = .03), but the mean AUC was not significantly different between the clinical and combined models or between the imaging and combined models (p > .05). Kaplan-Meier curves were significantly different between patients predicted to be at low risk and those predicted to be at high risk by all three models for the 2-, 3-, 4-, 5-, and 6-year time frames (p < .05). CONCLUSION. The findings suggest that ML-based models can predict recurrence before therapy allocation in patients with early-stage HCC initially eligible for liver transplant. Adding MRI data as model input improved predictive performance over clinical parameters alone. The combined model did not surpass the imaging model's performance. CLINICAL IMPACT. ML-based models applied to currently underutilized imaging features may help design more reliable criteria for organ allocation and liver transplant eligibility.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Femenino , Persona de Mediana Edad , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Estudios Retrospectivos , Factores de Riesgo , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/epidemiología
15.
Med Phys ; 50(1): 89-103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36048541

RESUMEN

PURPOSE: Myocardial perfusion imaging (MPI) using single-photon emission-computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. In clinical practice, the long scanning procedures and acquisition time might induce patient anxiety and discomfort, motion artifacts, and misalignments between SPECT and computed tomography (CT). Reducing the number of projection angles provides a solution that results in a shorter scanning time. However, fewer projection angles might cause lower reconstruction accuracy, higher noise level, and reconstruction artifacts due to reduced angular sampling. We developed a deep-learning-based approach for high-quality SPECT image reconstruction using sparsely sampled projections. METHODS: We proposed a novel deep-learning-based dual-domain sinogram synthesis (DuDoSS) method to recover full-view projections from sparsely sampled projections of cardiac SPECT. DuDoSS utilized the SPECT images predicted in the image domain as guidance to generate synthetic full-view projections in the sinogram domain. The synthetic projections were then reconstructed into non-attenuation-corrected and attenuation-corrected (AC) SPECT images for voxel-wise and segment-wise quantitative evaluations in terms of normalized mean square error (NMSE) and absolute percent error (APE). Previous deep-learning-based approaches, including direct sinogram generation (Direct Sino2Sino) and direct image prediction (Direct Img2Img), were tested in this study for comparison. The dataset used in this study included a total of 500 anonymized clinical stress-state MPI studies acquired on a GE NM/CT 850 scanner with 60 projection angles following the injection of 99m Tc-tetrofosmin. RESULTS: Our proposed DuDoSS generated more consistent synthetic projections and SPECT images with the ground truth than other approaches. The average voxel-wise NMSE between the synthetic projections by DuDoSS and the ground-truth full-view projections was 2.08% ± 0.81%, as compared to 2.21% ± 0.86% (p < 0.001) by Direct Sino2Sino. The averaged voxel-wise NMSE between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 1.63% ± 0.72%, as compared to 1.84% ± 0.79% (p < 0.001) by Direct Sino2Sino and 1.90% ± 0.66% (p < 0.001) by Direct Img2Img. The averaged segment-wise APE between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 3.87% ± 3.23%, as compared to 3.95% ± 3.21% (p = 0.023) by Direct Img2Img and 4.46% ± 3.58% (p < 0.001) by Direct Sino2Sino. CONCLUSIONS: Our proposed DuDoSS is feasible to generate accurate synthetic full-view projections from sparsely sampled projections for cardiac SPECT. The synthetic projections and reconstructed SPECT images generated from DuDoSS are more consistent with the ground-truth full-view projections and SPECT images than other approaches. DuDoSS can potentially enable fast data acquisition of cardiac SPECT.


Asunto(s)
Aprendizaje Profundo , Hominidae , Humanos , Animales , Tomografía Computarizada de Emisión de Fotón Único/métodos , Corazón/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador/métodos
16.
Cancers (Basel) ; 14(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36497329

RESUMEN

This study compared the efficacy and safety of conventional transarterial chemoembolization (cTACE) with drug-eluting beads (DEB)-TACE in patients with unresectable hepatocellular carcinoma (HCC). This retrospective analysis included 370 patients with HCC treated with cTACE (n = 248) or DEB-TACE (n = 122) (January 2000-July 2014). Overall survival (OS) was assessed using uni- and multivariate Cox proportional hazards models and Kaplan-Meier analysis. Additionally, baseline imaging was assessed, and clinical and laboratory toxicities were recorded. Propensity score weighting via a generalized boosted model was applied to account for group heterogeneity. There was no significant difference in OS between cTACE (20 months) and DEB-TACE patients (24.3 months, ratio 1.271, 95% confidence interval 0.876-1.69; p = 0.392). However, in patients with infiltrative disease, cTACE achieved longer OS (25.1 months) compared to DEB-TACE (9.2 months, ratio 0.366, 0.191-0.702; p = 0.003), whereas DEB-TACE proved more effective in nodular disease (39.4 months) than cTACE (18 months, ratio 0.458, 0.308-0681; p = 0.007). Adverse events occurred with similar frequency, except for abdominal pain, which was observed more frequently after DEB-TACE (101/116; 87.1%) than cTACE (119/157; 75.8%; p = 0.02). In conclusion, these findings suggest that tumor morphology and distribution should be used as parameters to inform decisions on the selection of embolic materials for TACE for a more personalized treatment planning in patients with unresectable HCC.

17.
J Chem Inf Model ; 62(23): 6022-6034, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36447388

RESUMEN

Protein kinases are important drug targets for the treatment of several diseases. The interaction between kinases and ligands is vital in the process of small-molecule kinase inhibitor (SMKI) design. In this study, we propose a method to extract fragments and amino acid residues from crystal structures for kinase-ligand interactions. In addition, core fragments that interact with the important hinge region of kinases were extracted along with their decorations. Based on the superimposed structural data of kinases from the kinase-ligand interaction fingerprint and structure database, we obtained two libraries, namely, a hinge-unfocused fragment-amino acid pair library (FAP Lib) that contains 6672 pairs of fragments and corresponding amino-acids, and a hinge-focused hinge binder library (HB Lib) of 3560 pairs of hinge-binding scaffolds with their corresponding decorations. These two libraries constitute a kinase-focused interaction database (KID). In depth analysis was conducted on KID to explore important characteristics of fragments in the design of SMKIs. With KID, we built two kinase-focused molecule databases, one called Recomb_DB, which contains 1,72,346 molecules generated through fragment recombination based on the FAP Lib, and another called RsdHB_DB, which contains 93,030 molecules generated based on our HB Lib using molecular generation methods. Compared with five databases both commercial and non-commercial, these two databases both ranked top 3 in scaffold diversity, top 4 in molecule fingerprint diversity, and are more focused on the chemical space of kinase inhibitors. Hence, KID presents a useful addition to existing databases for the exploration of novel SMKIs.


Asunto(s)
Bases de Datos de Compuestos Químicos , Proteínas Quinasas , Ligandos , Proteínas Quinasas/química , Bases de Datos Factuales , Inhibidores de Proteínas Quinasas/química , Aminoácidos
18.
Front Neurosci ; 16: 860208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312024

RESUMEN

Purpose: Personalized interpretation of medical images is critical for optimum patient care, but current tools available to physicians to perform quantitative analysis of patient's medical images in real time are significantly limited. In this work, we describe a novel platform within PACS for volumetric analysis of images and thus development of large expert annotated datasets in parallel with radiologist performing the reading that are critically needed for development of clinically meaningful AI algorithms. Specifically, we implemented a deep learning-based algorithm for automated brain tumor segmentation and radiomics extraction, and embedded it into PACS to accelerate a supervised, end-to- end workflow for image annotation and radiomic feature extraction. Materials and methods: An algorithm was trained to segment whole primary brain tumors on FLAIR images from multi-institutional glioma BraTS 2021 dataset. Algorithm was validated using internal dataset from Yale New Haven Health (YHHH) and compared (by Dice similarity coefficient [DSC]) to radiologist manual segmentation. A UNETR deep-learning was embedded into Visage 7 (Visage Imaging, Inc., San Diego, CA, United States) diagnostic workstation. The automatically segmented brain tumor was pliable for manual modification. PyRadiomics (Harvard Medical School, Boston, MA) was natively embedded into Visage 7 for feature extraction from the brain tumor segmentations. Results: UNETR brain tumor segmentation took on average 4 s and the median DSC was 86%, which is similar to published literature but lower than the RSNA ASNR MICCAI BRATS challenge 2021. Finally, extraction of 106 radiomic features within PACS took on average 5.8 ± 0.01 s. The extracted radiomic features did not vary over time of extraction or whether they were extracted within PACS or outside of PACS. The ability to perform segmentation and feature extraction before radiologist opens the study was made available in the workflow. Opening the study in PACS, allows the radiologists to verify the segmentation and thus annotate the study. Conclusion: Integration of image processing algorithms for tumor auto-segmentation and feature extraction into PACS allows curation of large datasets of annotated medical images and can accelerate translation of research into development of personalized medicine applications in the clinic. The ability to use familiar clinical tools to revise the AI segmentations and natively embedding the segmentation and radiomic feature extraction tools on the diagnostic workstation accelerates the process to generate ground-truth data.

19.
Neurooncol Adv ; 4(1): vdac093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071926

RESUMEN

Background: While there are innumerable machine learning (ML) research algorithms used for segmentation of gliomas, there is yet to be a US FDA cleared product. The aim of this study is to explore the systemic limitations of research algorithms that have prevented translation from concept to product by a review of the current research literature. Methods: We performed a systematic literature review on 4 databases. Of 11 727 articles, 58 articles met the inclusion criteria and were used for data extraction and screening using TRIPOD. Results: We found that while many articles were published on ML-based glioma segmentation and report high accuracy results, there were substantial limitations in the methods and results portions of the papers that result in difficulty reproducing the methods and translation into clinical practice. Conclusions: In addition, we identified that more than a third of the articles used the same publicly available BRaTS and TCIA datasets and are responsible for the majority of patient data on which ML algorithms were trained, which leads to limited generalizability and potential for overfitting and bias.

20.
Neurooncol Adv ; 4(1): vdac116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36043121

RESUMEN

Background: Treatment of brain metastases can be tailored to individual lesions with treatments such as stereotactic radiosurgery. Accurate surveillance of lesions is a prerequisite but challenging in patients with multiple lesions and prior imaging studies, in a process that is laborious and time consuming. We aimed to longitudinally track several lesions using a PACS-integrated lesion tracking tool (LTT) to evaluate the efficiency of a PACS-integrated lesion tracking workflow, and characterize the prevalence of heterogenous response (HeR) to treatment after Gamma Knife (GK). Methods: We selected a group of brain metastases patients treated with GK at our institution. We used a PACS-integrated LTT to track the treatment response of each lesion after first GK intervention to maximally seven diagnostic follow-up scans. We evaluated the efficiency of this tool by comparing the number of clicks necessary to complete this task with and without the tool and examined the prevalence of HeR in treatment. Results: A cohort of eighty patients was selected and 494 lesions were measured and tracked longitudinally for a mean follow-up time of 374 days after first GK. Use of LTT significantly decreased number of necessary clicks. 81.7% of patients had HeR to treatment at the end of follow-up. The prevalence increased with increasing number of lesions. Conclusions: Lesions in a single patient often differ in their response to treatment, highlighting the importance of individual lesion size assessments for further treatment planning. PACS-integrated lesion tracking enables efficient lesion surveillance workflow and specific and objective result reports to treating clinicians.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...