Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(32): 13103-13117, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37534985

RESUMEN

In order to promote the sustainable development of nuclear energy through thorium (Th(IV)) recycling, we synthesized SiO2-coated magnetic functional nanocomposites (SiO2@Fe3O4) that were modified with 2,9-diamide-1,10-phenanthroline (DAPhen) to serve as an adsorbent for Th(IV) removal. SiO2@Fe3O4-DAPhen showed effective Th(IV) adsorption in both weakly and strongly acidic solutions. Owing to its porous structure that facilitated rapid adsorption kinetics, equilibrium was achieved within 5 and 0.5 min at pH 3 and 1 mol L-1 HNO3, respectively. In weakly acidic solutions, Th(IV) primarily formed chemical coordination bonds with DAPhen groups, while in strongly acidic solutions, the dominant interaction was electrostatic attraction. Density functional theory (DFT) calculations indicated that electrostatic attraction was weaker compared to chemical coordination, resulting in reduced diffusion resistance and consequently faster adsorption rates in strongly acidic solutions. Furthermore, SiO2@Fe3O4-DAPhen exhibited a high adsorption capacity for Th(IV); it removed Th(IV) through chelation and electrostatic attraction at pH 3 and 1 mol L-1 HNO3, with maximum adsorption capacities of 833.3 and 1465.7 mg g-1, respectively. SiO2@Fe3O4-DAPhen also demonstrated excellent tolerance to salinity, adsorption selectivity, and radiation resistance, thereby highlighting its practical potential for Th(IV) removal in diverse contaminated water sources. Hence, SiO2@Fe3O4-DAPhen represents a promising choice for the rapid and efficient removal of Th(IV).

2.
Sci Total Environ ; 866: 161378, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610624

RESUMEN

In order to recycle Uranium (U) for the sustainable development of nuclear energy, diamide bipyridine (DABP) modified hierarchically porous carbon doped boron nitride (BCN-DABP) was synthesized as an adsorbent for the multipurpose removal of U. BCN-DABP displayed good adsorption performance for U in both weakly and highly acidic solutions. The hierarchically porous structure endowed BCN-DABP with ultrafast adsorption kinetics, and adsorption reached equilibrium within 180.0 and 0.5 min under pH = 4.0 and 2.00 mol L-1 HNO3, respectively. Moreover, combination of adsorption isotherm studies and DFT calculations showed that BCN-DABP possessed high adsorption capacities for U and displayed different adsorption performance under different conditions. BCN-DABP adsorbed UO22+ by chelation and electrostatic attraction under pH 4.0 and 2.00 mol L-1 HNO3, the maximum adsorption capacity under two conditions reached 818.7 and 1296.7 mg g-1, respectively. As a result, BCN-DABP is expected to be used for the rapid and efficient removal of U in various kinds of contaminated water. Furthermore, excellent salinity tolerance, good adsorption selectivity, and outstanding radiation resistance also endowed BCN-DABP with great practical potential for removing U in radioactive contaminated water as well as high level liquid waste.

3.
ACS Appl Mater Interfaces ; 13(7): 8249-8262, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33569945

RESUMEN

Radioactive Tc-99 released by nuclear accidents threatens the environment and human health due to its long half-life and strong transportability. A combined strategy synergizing topological construction and chemical modification was proposed for the synthesis of high-performance adsorbents for Re as an analogue to Tc. On the one hand, hierarchically mesoporous SiO2 with a fibrous structure (F-SiO2), a peculiar topology integrating wrinkled open mesopores around 12 nm and on-wall mesopores around 3 nm, was adopted as the substrate of adsorbents. The larger mesopores can act as the superhighway for mass transfer, while the abundant smaller mesopores provide numerous adsorption sites. On the other hand, a series of dicationic pyridine (DCP) derivative groups (-Py+CnH2nN+Me3) were designed to functionalize F-SiO2 for improving the adsorption performance toward ReO4- anions, the dominating form of Re in aqueous solution. Density functional theory (DFT) calculation combined with batch adsorption experiments revealed that the ReO4- adsorption on -Py+C5H10N+Me3 was the most favorable when the length of the spacer between the two positively charged N atoms ranged from 2 to 7 carbons (n = 2-7). However, -Py+C5H10N+Me3 exhibited a much slower adsorption rate than -Py+C2H4N+Me3. The stronger interaction between ReO4- and -Py+C5H10N+Me3 suppresses the adsorbate diffusion. The two positive charges of -Py+C5H10N+Me3 may be perpendicularly distributed, sterically hindering ReO4- transport in smaller mesopores. The longer and flexible carbon chains may be aggregated to form the hydrophobic region, repulsing the hydrated ReO4- anions. Therefore, the efficient and ultrafast Re adsorption was achieved by synergizing the unique topology of F-SiO2 and functionalization by -Py+C2H4N+Me3 with a shorter spacer and weaker affinity ReO4-. The detailed investigation demonstrated that -Py+C2H4N+Me3 possessed exothermic adsorption nature, adequate radiation-resistance, and excellent reusability. Meanwhile, -Py+C5H10N+Me3 exhibited stronger salinity tolerance and higher selectivity. The DCP groups are promising in decontamination of radioactive Tc, as they can meet specific requirements by manipulating the length of spacers.

4.
ACS Appl Mater Interfaces ; 11(27): 24560-24570, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31250630

RESUMEN

The recovery of precious metals like palladium (Pd) from secondary resources has enormous economic benefits and is in favor of resource reuse. In this work, we prepared a high efficiency pyridine-functionalized reduced graphene oxide (rGO) adsorbent for selective separation of Pd(II) from simulated electronic waste leachate, by one-pot γ-ray radiation-induced simultaneous grafting polymerization (RIGP) of 4-vinylpyridine (4VP) from graphene oxide (GO) and reduction of GO. The poly(4-vinylpyridine)-grafted reduced graphene oxide (rGO-g-P4VP) exhibits fast adsorption kinetics and high maximum adsorption capacity. The adsorption capacity is 105 mg g-1 in the first minute and reaches equilibrium within 120 min. The adsorption process follows the Langmuir model, from which the maximum adsorption capacity of Pd(II) is estimated to be 177 mg g-1. We also proved that the adsorption mechanism of Pd(II) on rGO-g-P4VP involves both ion exchange and coordination adsorption by XPS analysis. Most importantly, the loss of oxygen-containing groups due to reduction of GO not only facilitates the separation of adsorbent from aqueous solution but also reduces the electrostatic repulsion toward Pd(II)Cl42- in hydrochloric acid solution, leading to a higher adsorption selectivity of Pd(II) over some common metal cations in electronic waste including Fe(III), Cu(II), and Al(III) compared with poly(4-vinylpyridine)-grafted graphene oxide (GO-g-P4VP) prepared by atom transfer radical polymerization. Other precious metals like Pt(IV) and Au(III) can also be recovered easily and selectively by rGO-g-P4VP. This work demonstrates that rGO-g-P4VP prepared by the facile RIGP is a promising adsorbent for recovery of precious metals from secondary resources like electronic waste leachate.

5.
BMC Cancer ; 19(1): 67, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642283

RESUMEN

BACKGROUND: Precise diagnosis of the tissue origin for metastatic cancer of unknown primary (CUP) is essential for deciding the treatment scheme to improve patients' prognoses, since the treatment for the metastases is the same as their primary counterparts. The purpose of this study is to identify a robust gene signature that can predict the origin for CUPs. METHODS: The within-sample relative gene expression orderings (REOs) of gene pairs within individual samples, which are insensitive to experimental batch effects and data normalizations, were exploited for identifying the prediction signature. RESULTS: Using gene expression profiles of the lung-limited metastatic colorectal cancer (LmCRC), we firstly showed that the within-sample REOs in lung metastases of colorectal cancer (CRC) samples were concordant with the REOs in primary CRC samples rather than with the REOs in primary lung cancer. Based on this phenomenon, we selected five gene pairs with consistent REOs in 498 primary CRC and reversely consistent REOs in 509 lung cancer samples, which were used as a signature for predicting primary sites of metastatic CRC based on the majority voting rule. Applying the signature to 654 primary CRC and 204 primary lung cancer samples collected from multiple datasets, the prediction accuracy reached 99.36%. This signature was also applied to 24 LmCRC samples collected from three datasets produced by different laboratories and the accuracy reached 100%, suggesting that the within-sample REOs in the primary site could reveal the original tissue of metastatic cancers. CONCLUSIONS: The result demonstrated that the signature based on within-sample REOs of five gene pairs could exactly and robustly identify the primary sites of CUPs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Primarias Desconocidas/diagnóstico , Neoplasias Primarias Desconocidas/genética , Transcriptoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia , Neoplasias Primarias Desconocidas/tratamiento farmacológico , Neoplasias Primarias Desconocidas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas
6.
J Radiat Res ; 56(1): 59-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25212600

RESUMEN

Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 µmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid.


Asunto(s)
Antipirina/análogos & derivados , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Depuradores de Radicales Libres/química , Plásmidos/química , Plásmidos/efectos de la radiación , Antipirina/química , Secuencia de Bases/efectos de la radiación , Aductos de ADN/química , Aductos de ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Edaravona , Radical Hidroxilo/química , Radical Hidroxilo/efectos de la radiación , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de la radiación , Plásmidos/genética , Radiólisis de Impulso , Dosis de Radiación
7.
J Phys Chem A ; 118(40): 9319-29, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25198291

RESUMEN

γ-rays and pulse radiolysis of aqueous solutions of Ni(2+) ions in the presence of polyacrylate (PA(-)) and 2-propanol leads to the formation of metastable species absorbing at 540 nm that are ascribed to "pink" oligomeric clusters of a few nickel atoms only. The molar absorption coefficient is evaluated as ε540 nm = 3300 ± 300 L mol(-1) cm(-1) per Ni(0) atom. The successive steps from the reduction of Ni(2+) into Ni(+) ions to the formation of the pink clusters at 540 nm under conditions of complexation by PA(-) are investigated by pulse radiolysis. The yield of the formation of pink clusters increases markedly with the irradiation dose rate, demonstrating the occurrence of the disproportionation of the [Ni(+), PA(-)] complex after a single electron pulse. The reduction and nucleation mechanisms, including rate constants, in competition with the back oxidation by protons, particularly at low dose rate, are discussed.

8.
Phys Chem Chem Phys ; 14(48): 16731-6, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23138332

RESUMEN

In the spirit of the radiation chemical "spur model", the lifetime of a spur (τ(s)) is an important indicator of overlapping spurs and the establishment of homogeneity in the distribution of reactive species created by the action of low linear energy transfer (LET) radiation (such as fast electrons or γ irradiation). In fact, τ(s) gives the time required for the changeover from nonhomogeneous spur kinetics to homogeneous kinetics in the bulk solution, thus defining the so-called primary (or "escape") radical and molecular yields of radiolysis, which are obviously basic to the quantitative understanding of any irradiated chemical system. In this work, τ(s) and its temperature dependence have been determined for the low-LET radiolysis of deaerated 0.4 M aqueous solutions of H(2)SO(4) and pure liquid water up to 350 °C using a simple model of energy deposition initially in spurs, followed by random diffusion of the species of the spur during track expansion until spur overlap is complete. Unlike our previous τ(s) calculations, based on irradiated Fricke dosimeter simulations, the current model is free from any effects due to the presence of oxygen or the use of scavengers. In acidic solutions, the spur lifetime values thus obtained are in very good agreement with our previous calculations (after making appropriate corrections, however, to account for the possibility of competition between oxygen and Fe(2+) ions for H˙ atoms in the Fricke dosimeter, an effect which was not included in our original simulations). In this way, we confirm the validity of our previous approach. As expected, in the case of pure, oxygen-free water, our calculated times required to reach complete spur overlap are essentially the same (within uncertainty limits) as those found in acidic solutions. This explicitly reflects the fact that the diffusion coefficients for the hydrated electron and the H˙ atom that are involved in the overall calculation of the lifetime of spurs in neutral or acidic media, respectively, are of similar magnitude over the 25-350 °C temperature range studied.


Asunto(s)
Transferencia Lineal de Energía , Ácidos Sulfúricos/química , Agua/química , Difusión , Electrones , Cinética , Modelos Químicos , Radiación , Temperatura
9.
Phys Chem Chem Phys ; 14(41): 14325-33, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23007023

RESUMEN

Fast kinetics and time-dependent yields of the hydrated electron (e(-)(aq)) in pure water under conditions of high temperature and pressure up to the supercritical region were investigated by picosecond and nanosecond pulse radiolysis experiments. More significant decays at short times followed by plateau components at longer times were observed with increasing temperature, suggesting faster spur reaction processes. In supercritical water, it was also found that the e(-)(aq) yields strongly depend on the pressure (density). Comparison of these measurements with Monte-Carlo computer simulations allowed us to identify spur reactions of e(-)(aq) that occur predominantly at high temperatures and also to provide new key information on certain spur model parameters. In particular, the experimental time-dependent e(-)(aq) yields were best reproduced if the electron thermalization distance decreases with increasing temperature. This "shrinkage" of spur sizes at high temperatures was attributed to an increase in the scattering cross sections of subexcitation electrons, likely originating from a decrease in the degree of structural order of water molecules as the temperature is increased.

10.
Free Radic Res ; 46(7): 861-71, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22500730

RESUMEN

The radiation-induced reactions of a water-soluble coumarin derivative, coumarin-3-carboxyl acid (C3CA), have been investigated in aqueous solutions by pulse radiolysis with a 35 MeV electron beam, final product analysis following (60)Co γ-irradiations and deterministic model simulations. Pulse radiolysis revealed that C3CA reacted with both hydroxyl radicals ((•)OH) and hydrated electrons (e(-) (aq)) with near diffusion-controlled rate constants of 6.8 × 10(9) and 2.1 × 10(10) M(-1) s(-1), respectively. The reactivity of C3CA towards O(2)(• -) was not confirmed by pulse radiolysis. Production of the fluorescent molecule, 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), was confirmed by final product analysis with a fluorescence spectrometer coupled to a high performance liquid chromatography (HPLC) system. Production yields of 7OH-C3CA following (60)Co γ-irradiations depended on the irradiation conditions and ranged from 0.025 to 0.18 (100 eV) (-1). Yield varied with saturating gas, additive and C3CA concentration, implying the presence of at least two pathways capable of providing 7OH-C3CA as a stable product following the scavenging reaction of C3CA with (•)OH, including a peroxidation/elimination sequence and a disproportionation pathway. A reaction mechanism for the two pathways was proposed and incorporated into a deterministic simulation, showing that the mechanism can explain experimentally measured 7OH-C3CA yields with a constant conversion factor of 4.7% from (•)OH scavenging to 7OH-C3CA production, unless t-BuOH was added.


Asunto(s)
Cumarinas/efectos de la radiación , Radical Hidroxilo/química , Cromatografía Líquida de Alta Presión , Cumarinas/química , Difusión , Fluorescencia , Rayos gamma , Gases , Cinética , Radiólisis de Impulso , Soluciones , Espectrometría de Fluorescencia , Agua/química
11.
J Phys Chem A ; 115(44): 12212-6, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21970432

RESUMEN

Picosecond pulse radiolysis measurements using a pulse-probe method are performed to measure directly the time-dependent radiolytic yield of the OH(•) radical in pure water. The time-dependent absorbance of OH(•) radical at 263 nm is deduced from the observed signal by subtracting the contribution of the hydrated electron and that of the irradiated empty fused silica cell which presents also a transient absoption. The time-dependent radiolytic yield of OH(•) is obtained by assuming the yield of the hydrated electron at 20 ps equal to 4.2 × 10(-7) mol J(-1) and by assuming the values of the extinction coefficients of e(aq)(-) and OH(•) at 782 nm (ε(λ=782 nm) = 17025 M(-1) cm(-1)) and at 263 nm (ε(λ=263 nm) = 460 M(-1) cm(-1)), respectively. The value of the yield of OH(•) radical at 10 ps is found to be (4.80 ± 0.12) × 10(-7) mol J(-1).

12.
Radiat Res ; 176(1): 128-33, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21631291

RESUMEN

3-Nitrotyrosine has been reported as an important biomarker of oxidative stress that may play a role in a variety of diseases. In this work, transient UV-visible absorption spectra and kinetics observed during the reaction of the hydrated electron, e(aq)(-), with 3-nitrotyrosine and derivatives thereof were investigated. The absorption spectra show characteristics of aromatic nitro anion radicals. The absorptivity of radical anion product at 300 nm is estimated to be (1.0 ± 0.2) × 10(4) M(-1) cm(-1) at pH 7.3. The rate constants determined for the reaction of e(aq)(-) with 3-nitrotyrosine, N-acetyl-3-nitrotyrosine ethyl ester and glycylnitrotyrosylglycine at neutral pH (3.0 ± 0.3) × 10(10) M(-1) s(-1), (2.9 ± 0.2) × 10(10) M(-1) s(-1) and (1.9 ± 0.2) × 10(10) M(-1) s(-1), respectively, approach the diffusion-control limit and are almost two orders of magnitude higher than those for the reactions with tyrosine and tyrosine-containing peptides. The magnitude of the rate constants supports reaction of e(aq)(-) at the nitro group, and the product absorbance at 300 nm is consistent with formation of the nitro anion radical. The pH dependence of the second-order rate constant for e(aq)(-) decay (720 nm) in the presence of 3-nitrotyrosine shows a decrease with increasing pH, consistent with unfavorable electrostatic interactions. The pH dependence of the second-order rate constant for formation of radical anion (300 nm) product suggests that deprotonation of the amino group slows the rate, which indicates that deamination to form the 1-carboxy-2-(4-hydroxy-3-nitrophenyl)ethyl radical occurs. We conclude that the presence of the nitro group activates tyrosine and derivatives toward reaction with e(aq)(-) and can affect the redox chemistry of biomolecules exposed to oxidative stress.


Asunto(s)
Electrones , Tirosina/análogos & derivados , Absorción , Cinética , Oligopéptidos/química , Oligopéptidos/metabolismo , Radiólisis de Impulso , Análisis Espectral , Tirosina/metabolismo
13.
Phys Chem Chem Phys ; 13(22): 10690-8, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21552602

RESUMEN

Monte-Carlo simulations of the radiolysis of the ferrous sulfate (Fricke) dosimeter with low-linear energy transfer (LET) radiation (such as (60)Co γ-rays or fast electrons) have been performed as a function of temperature from 25 to 350 °C. The predicted yields of Fe(2+) oxidation are found to increase with increasing temperature up to ∼100-150 °C, and then tend to remain essentially constant at higher temperatures, in very good agreement with experiment. By using a simple method based on the direct application of the stoichiometric relationship that exists between the ferric ion yields so obtained G(Fe(3+)) and the sum {3 [g(e(-)(aq) + H˙) + g(HO(2)˙)] + g(˙OH) + 2 g(H(2)O(2))}, where g(e(-)(aq) + H˙), g(HO(2)˙), g(˙OH), and g(H(2)O(2)) are the primary radical and molecular yields of the radiolysis of deaerated 0.4 M H(2)SO(4) aqueous solutions, the lifetime (τ(s)) of the spur and its temperature dependence have been determined. In the spirit of the spur model, τ(s) is an important indicator for overlapping spurs, giving the time required for the changeover from nonhomogeneous spur kinetics to homogeneous kinetics in the bulk solution. The calculations show that τ(s) decreases by about an order of magnitude over the 25-350 °C temperature range, going from ∼4.2 × 10(-7) s at 25 °C to ∼5.7 × 10(-8) s at 350 °C. This decrease in τ(s) with increasing temperature mainly originates from the quicker diffusion of the individual species involved. Moreover, the observed dependence of G(Fe(3+)) on temperature largely reflects the influence of temperature upon the primary free-radical product yields of the radiolysis, especially the yield of H˙ atoms. Above ∼200-250 °C, the more and more pronounced intervention of the reaction of H˙ atoms with water also contributes to the variation of G(Fe(3+)), which may decrease or increase slightly, depending on the choice made for the rate constant of this reaction. All calculations reported herein use the radiolysis database of Elliot (Atomic Energy of Canada Limited) and Bartels (University of Notre Dame) that contains all the best currently available information on the rate constants, reaction mechanisms, and g-values in the range 20 to 350 °C.


Asunto(s)
Agua/química , Hierro/química , Cinética , Método de Montecarlo , Oxidación-Reducción , Temperatura
14.
J Phys Chem A ; 115(17): 4241-7, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21480627

RESUMEN

The absorption spectra of Br(2)(•-) and Br(3)(-) in aqueous solutions are investigated by pulse radiolysis techniques from room temperature to 380 and 350 °C, respectively. Br(2)(•-) can be observed even in supercritical conditions, showing that this species could be used as a probe in pulse radiolysis at high temperature and even under supercritical conditions. The weak temperature effect on the absorption spectra of Br(2)(•-) and Br(3)(-) is because, in these two systems, the transition occurs between two valence states; for example, for Br(2)(-) we have (2)Σ(u) → (2)Σ(g) transition. These valence transitions involve no diffuse final state. However, the absorption band of Br(-) undergoes an important red shift to longer wavelengths. We performed classical dynamics of hydrated Br(-) system at 20 and 300 °C under pressure of 25 MPa. The radial distribution functions (rdf's) show that the strong temperature increase (from 20 to 300 °C) does not change the radius of the solvent first shell. On the other hand, it shifts dramatically (by 1 Å) the second maximum of the Br-O rdf and introduces much disorder. This shows that the first water shell is strongly bound to the anion whatever the temperature. The first two water shells form a cavity of a roughly spherical shape around the anion. By TDDFT method, we calculated the absorption spectra of hydrated Br(-) at two temperatures and we compared the results with the experimental data.

15.
J Radiat Res ; 52(1): 15-23, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21139328

RESUMEN

A comparative study using the pulse radiolysis technique was carried out to investigate transient absorption spectra and rate constants for the reactions of (•)OH and N(3)(•) with edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) and its four analogue compounds, 1,3-dimethyl-2-pyrazolin-5-one, 3-methyl-1-(pyridin-2-yl)-2-pyrazolin-5-one, 1-phenyl-3-trifluoromethyl-2-pyrazolin-5-one and 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one. The results showed that, unlike reaction mechanisms previously proposed, the phenyl group of edaravone played an important role in the reaction with (•)OH and OH adducts to the phenyl group were formed. Quantum chemical calculations also strongly supported this attribution and suggested that the most favorable site for attacks by (•)OH is the ortho position of the phenyl group. Moreover, the rate constants for the reactions of edaravone and its analogues towards (•)OH and N(3)(•) were about 8.0 × 10(9), and 4.0 × 10(9) dm(3) mol(-1) s(-1), respectively. Edaravone displayed higher reactivity compared to the others, in contrast to a previous report in which 3-methyl-1-(pyridin-2-yl)-2-pyrazolin-5-one showed the highest reactivity towards (•)OH.


Asunto(s)
Antipirina/análogos & derivados , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/efectos de la radiación , Modelos Químicos , Antipirina/química , Antipirina/efectos de la radiación , Simulación por Computador , Edaravona , Radical Hidroxilo/química , Radical Hidroxilo/efectos de la radiación , Nitrógeno/química , Nitrógeno/efectos de la radiación , Radiólisis de Impulso/métodos
16.
Acta Biochim Biophys Sin (Shanghai) ; 42(7): 489-95, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20705588

RESUMEN

Silybin (SLB) and similar analogues, namely, hesperetin (HESP), naringenin (NAN) and naringin (NAR), are believed to be active constituents of natural flavonoids that have been reported as chemopreventive agents for certain cancers. Moreover, SLB and analogues have been determined to fast repair DNA bases from oxidative damage by pulse radiolysis techniques. The present study was designed to evaluate the protective effects of SLB and analogues on soft X-ray-induced damage to plasmid DNA in vitro. The DNA damage was determined by agarose gel electrophoresis. SLB and analogues were found to protect DNA from radiation damage at micromolar concentrations. Among the compounds tested, HESP and SLB were the most effective in preventing X-ray-induced formation of DNA single-strand breaks (SSB). A comparison of these results with other experiments showed that the ability of SLB and analogues to inhibit DNA damage in vitro correlated with the ability of the compounds to scavenge free radicals. Our work revealed that natural flavonoids, SLB and analogues may be used as potent radioprotectors against radiation damage.


Asunto(s)
Daño del ADN , Flavanonas/farmacología , Hesperidina/farmacología , Plásmidos/efectos de los fármacos , Silimarina/farmacología , Antioxidantes/química , Antioxidantes/farmacología , ADN/química , ADN/genética , Roturas del ADN de Cadena Simple/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Agar , Flavanonas/química , Hesperidina/química , Modelos Químicos , Estructura Molecular , Plásmidos/genética , Plásmidos/efectos de la radiación , Silibina , Silimarina/química
17.
J Phys Chem A ; 113(44): 12193-8, 2009 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-19817357

RESUMEN

With a revisit of the absorption coefficient of the solvated electron in propane-1,2,3-triol, the temperature-dependent behavior of the absorption spectrum of solvated electron was studied from room temperature to 573 K by pulse radiolysis techniques. The change in the absorption spectrum of solvated electron in propane-1,2,3-triol observed by cooling down from a high temperature to 333 K is compared with that occurring during the electron solvation process at 333 K. The effect of the specific molecular structure of propane-1,2,3-triol compared to other alcohols is discussed.

18.
Free Radic Res ; 43(9): 887-97, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19685362

RESUMEN

Silybin (extracted from Silybum marianum) is the major active constituent of silymarin which possesses a wide range of medicinal properties. These properties may be, in part, due to the potent scavenging capacity of oxidizing free radicals. In this context, scavenging radicals (hydroxyl, azide, dibromide anion radicals, nitrite, carbonate, etc.) of silybin have been studied to understand the mechanistic aspects of its action against free radicals. The transients produced in these reactions have been assigned and the rate constants have been measured by pulse radiolysis techniques. Reduction potential determined both by cyclic voltammetry gave a value 0.62+/-0.02 V vs NHE at pH 9. Quantum chemical calculations have been performed to further confirm the different activities of individual hydroxyl groups with the difference of heat of formation. Moreover, silybin also protected plasmid pUC18 DNA from soft X-ray radiation which induced strand breaks. These results are expected to be helpful for a better understanding of the anti-oxidative properties of silybin.


Asunto(s)
Antioxidantes/química , Depuradores de Radicales Libres/química , Radicales Libres/química , Radiólisis de Impulso , Antioxidantes/farmacología , Azidas/química , Bromuros/química , Carbonatos/química , Roturas del ADN de Cadena Simple , Depuradores de Radicales Libres/farmacología , Radical Hidroxilo/química , Modelos Químicos , Dióxido de Nitrógeno/química , Oxidación-Reducción , Peróxidos/química , Plásmidos/efectos de los fármacos , Plásmidos/efectos de la radiación , Silibina , Silimarina/química , Silimarina/farmacología , Sulfatos/química
19.
Nano Lett ; 9(5): 1839-43, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19338282

RESUMEN

A new and general approach to achieving efficient electrically driven light emission from a Si-based nano p-n junction array is introduced. A wafer-scale array of p-type silicon nanotips were formed by a single-step self-masked dry etching process, which is compatible with current semiconductor technologies. On top of the silicon nanotip array, a layer of n-type ZnO film was grown by pulsed laser deposition. Both the narrow line width of 10 nm in cathodoluminescence spectra and the appearance of multiphonon Raman spectra up to the fourth order indicate the excellent quality of the ZnO film. The turn-on voltage of our ZnO/Si nanotip array is found to be approximately 2.4 V, which is 2 times smaller than its thin film counterpart. Moreover, electroluminescence (EL) from our ZnO/Si nanotips array light-emitting diode (LED) has been demonstrated. Our results could open up new possibilities to integrate silicon-based optoelectronic devices, such as highly efficient LEDs, with standard Si ultralarge-scale integrated technology.

20.
J Chem Phys ; 129(11): 114511, 2008 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19044973

RESUMEN

The optical absorption spectra of the hydrated electron (e(aq) (-)) in supercritical (heavy) water (SCW) are measured by electron pulse radiolysis techniques as a function of water density at three temperatures of 380, 390, and 400 degrees C, and over the density range of approximately 0.2-0.65 g/cm(3). In agreement with previous work, the position of the e(aq) (-) absorption maximum (E(A(max) )) is found to shift slightly to lower energies (spectral "redshift") with decreasing density. A comparison of the present E(A(max) )-density data with other measurements already reported in the literature in subcritical (350 degrees C) and supercritical (375 degrees C) water reveals that at a fixed pressure, E(A(max) ) decreases monotonically with increasing temperature in passing through the phase transition at t(c). By contrast, at constant density, E(A(max) ) exhibits a minimum as the water passes above the critical point into SCW. These behaviors are explained in terms of simple microscopic arguments based on the crucial role played by local density and configurational fluctuations (associated with criticality) in providing pre-existing polymeric clusters, which act as trapping sites for electrons.


Asunto(s)
Electrones , Calor , Agua/química , Absorción , Microscopía , Polímeros/química , Radiólisis de Impulso , Termodinámica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...