Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Bull ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558365

RESUMEN

Obstructive sleep apnea-hypopnea syndrome (OSAHS) significantly impairs children's growth and cognition. This study aims to elucidate the pathophysiological mechanisms underlying OSAHS in children, with a particular focus on the alterations in cortical information interaction during respiratory events. We analyzed sleep electroencephalography before, during, and after events, utilizing Symbolic Transfer Entropy (STE) for brain network construction and information flow assessment. The results showed a significant increase in STE after events in specific frequency bands during N2 and rapid eye movement (REM) stages, along with increased STE during N3 stage events. Moreover, a noteworthy rise in the information flow imbalance within and between hemispheres was found after events, displaying unique patterns in central sleep apnea and hypopnea. Importantly, some of these alterations were correlated with symptom severity. These findings highlight significant changes in brain region coordination and communication during respiratory events, offering novel insights into OSAHS pathophysiology in children.

2.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38453467

RESUMEN

Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.


Asunto(s)
Anticipación Psicológica , Ansiedad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Ansiedad/psicología , Ansiedad/fisiopatología , Adulto , Anticipación Psicológica/fisiología , Adulto Joven , Percepción del Dolor/fisiología , Dolor/psicología , Dolor/fisiopatología , Teorema de Bayes , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/fisiología , Placer/fisiología , Mapeo Encefálico
3.
BMC Infect Dis ; 23(1): 772, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940842

RESUMEN

OBJECTIVE: As an opportunistic pathogen, Nocardia often occurring in the immunocompromised hosts. As the unspecifc clinical presentation and low identification rate of the culture dependent methods, Nocardia infection may be under-diagnosis. Recent study have reported physicians could benefit from metagenomic next-generation sequencing (mNGS) in Nocardia diagnosis. Herein, we present patients with a positive detection of nocardiosis in mNGS, aiming to provide useful information for an differential diagnosis and patients management. METHODS: A total of 3756 samples detected for mNGS from March 2019 to April 2022 at the Fifth Affifiliated Hospital of Sun Yat-sen University, were screened. Clinical records, laboratory finding, CT images and mNGS results were reviewed for 19 patients who were positive for Nocardia genus. RESULTS: Samples from low respiratory tract obtained by bronchoscope took the major part of the positive (15/19). 12 of 19 cases were diagnosis as Nocardiosis Disease (ND) and over half of the ND individuals (7/12) were geriatric. Nearly all of them (10/12) were immunocompetent and 2 patients in ND group were impressively asymptomatic. Cough was the most common symptom. Nocardia cyriacigeorgica (4/12) was more frequently occurring in ND, followed by Nocardia abscessus (3/12). There are 3 individuals detected more than one kind of Nocardia species (Supplementary table 1). Except one with renal failure and one allergic to sulfamethoxazole, all of them received co-sulfonamide treatment and relieved eventually. CONCLUSION: Our study deciphered the clinical features of patients with positive nocardiosis detected by mNGS. Greater attention should be paid to the ND that occurred in the immunocompetent host and the geriatric. Due to the difficulties in establishing diagnosis of Nocardiosis disease, mNGS should play a much more essential role for a better assessment in those intractable cases. Co-sulfonamide treatment should still be the first choice of Nocardiosis disease.


Asunto(s)
Nocardiosis , Nocardia , Humanos , Anciano , Centros de Atención Terciaria , Secuenciación de Nucleótidos de Alto Rendimiento , Nocardia/genética , Nocardiosis/diagnóstico , Nocardiosis/tratamiento farmacológico , Sulfametoxazol/uso terapéutico , Sulfanilamida , China
4.
ACS Biomater Sci Eng ; 9(10): 5772-5781, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37734919

RESUMEN

The use of bone marrow stromal cells (BMSCs) for bone defect repair has shown great promise due to their differentiation potential. However, isolating the BMSCs from various cell types within the bone marrow remains challenging. To tackle this issue, we utilized semiconducting polymer dots (Pdots) as markers to select the BMSCs within a specific time frame. The therapeutic efficacy of the obtained Pdot-labeled BMSCs was assessed in a bone defect model. Initially, we evaluated the binding capacity of the Pdots with four different types of cells present in the bone marrow including BMSCs, osteoblasts, macrophages, and vascular endothelial cells, in vitro. Notably, BMSCs showed the most rapid uptake of the Pdots, being labeled within only one h of coculture, while other cells took four h to become labeled. Moreover, by colocalizing the Pdots with Prrx1, Sca-1, OSX, F480, and CD105 in the bone marrow cells of monocortical tibial defect (MTD) mice in vivo, we determined the proportions of BMSCs, macrophages, and vascular endothelial cells among all labeled cells from 1 to 8 h after the Pdots injection. It was found that BMSCs have the highest proportion (92%) among all labeled cells extracted after 1 h of Pdots injection. The therapeutic efficacy of the obtained Pdots-labeled BMSCs (1 h) was assessed in a bone defect model. Results showed that the new bone accrual was significantly increased in the treatment of Pdots-labeled BMSCs compared to the bone marrow cell-treated group. Our study revealed that BMSCs screened by the Pdots could improve bone defect repair, suggesting a promising application of the Pdots in bone healing.

5.
Clin Respir J ; 17(9): 931-940, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37533178

RESUMEN

INTRODUCTION: Many scales are designed to screen for obstructive sleep apnoea-hypopnoea syndrome (OSAHS); however, there is a lack of an efficiently and easily diagnostic tool, especially for Chinese. Therefore, we conduct a cross-sectional study in China to develop and validate an efficient and simple clinical diagnostic model to help screen patients at risk of OSAHS. METHODS: This study based on 782 high-risk patients (aged >18 years) admitted to the Sleep Medicine department of the Sixth Affiliated Hospital, Sun Yat-sen University from 2015 to 2021. Totally 34 potential predictors were evaluated. We divided all patients into training and validation dataset to develop diagnostic model. The univariable and multivariable logistic regression model were used to build model and nomogram was finally built. RESULTS: Among 602 high-risk patients with median age of 46 (37, 56) years, 23.26% were women. After selecting using the univariate logistic model, 15 factors were identified. We further used the stepwise method to build the final model with five factors: age, BMI, total bilirubin levels, high Berlin score, and symptom of morning dry mouth or mouth breathing. The AUC was 0.780 (0.711, 0.848), with sensitivity of 0.848 (0.811, 0.885), specificity of 0.629 (0.509, 0.749), accuracy of 0.816 (0.779, 0.853). The discrimination ability had been verified in the validation dataset. Finally, we established a nomogram model base on the above final model. CONCLUSION: We developed and validated a predictive model with five easily acquire factors to diagnose OSAHS patient in high-risk population with well discriminant ability. Accordingly, we finally build the nomogram model.


Asunto(s)
Nomogramas , Apnea Obstructiva del Sueño , Humanos , Adulto , Femenino , Masculino , Estudios Transversales , Pueblos del Este de Asia , Polisomnografía , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/epidemiología
6.
Cereb Cortex ; 33(19): 10332-10340, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37566916

RESUMEN

Obstructive sleep apnea hypopnea syndrome negatively affects the cognitive function of children. This study aims to find potential biomarkers for obstructive sleep apnea hypopnea syndrome in children by investigating the patterns of sleep electroencephalography networks. The participants included 16 mild obstructive sleep apnea hypopnea syndrome children, 12 severe obstructive sleep apnea hypopnea syndrome children, and 13 healthy controls. Effective brain networks were constructed using symbolic transfer entropy to assess cortical information interaction. The information flow pattern in the participants was evaluated using the parameters cross-within variation and the ratio of posterior-anterior information flow. Obstructive sleep apnea hypopnea syndrome children had a considerably higher symbolic transfer entropy in the full frequency band of N1, N2, and rapid eye movement (REM) stages (P < 0.05), and a significantly lower symbolic transfer entropy in full frequency band of N3 stage (P < 0.005), in comparison with the healthy controls. In addition, the cross-within variation of the ß frequency band across all sleep stages were significantly lower in the obstructive sleep apnea hypopnea syndrome group than in the healthy controls (P < 0.05). What is more, the posterior-anterior information flowin the ß frequency band of REM stage was significantly higher in mild obstructive sleep apnea hypopnea syndrome children than in the healthy controls (P < 0.05). These findings may serve as potential biomarkers for obstructive sleep apnea hypopnea syndrome in children and provide new insights into the pathophysiological mechanisms.


Asunto(s)
Apnea Obstructiva del Sueño , Sueño , Humanos , Niño , Polisomnografía , Sueño REM/fisiología , Fases del Sueño/fisiología , Síndrome
7.
Clin Transl Allergy ; 13(6): e12265, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37357549

RESUMEN

BACKGROUND: Interleukin-33 (IL-33) exacerbates asthma probably through type 2 innate lymphoid cells (ILC2s). Nevertheless, the association between eosinophilic asthma (EA) and ILC2s remains obscure, and the mechanisms by which IL-33 affects ILC2s are yet to be clarified. METHODS: ILC2s were evaluated in peripheral blood mononuclear cells, induced sputum, and bronchoalveolar lavage fluid obtained from patients with EA. Confocal microscopy was performed to locate ILC2s in lung tissue and the mRNA expression of ILC2-related genes was also evaluated in the EA model. The proliferation of ILC2s isolated from humans and mice was assessed following IL-33 or anti-IL-33 stimulation. RESULTS: The counts, activation, and mRNA expression of relevant genes in ILC2s were higher in PBMCs and airways of patients with EA. In addition, ILC2 cell counts correlated with Asthma control test, blood eosinophil count, Fractional exhaled nitric oxide level, and predicted eosinophilic airway inflammation. IL-33 induced stronger proliferation of ILC2s and increased their density around blood vessels in the lungs of mice with EA. Moreover, IL-33 treatment increased the counts and activation of ILC2s and lung inflammatory scores, whereas anti-IL-33 antibody significantly reversed these effects in EA mice. Finally, IL-33 enhanced PI3K and AKT protein expression in ILC2s, whereas inhibition of the PI3K/AKT pathway decreased IL-5 and IL-13 production by ILC2s in EA. CONCLUSIONS: ILC2s, especially activated ILC2s, might be critical markers of EA. IL-33 can induce and activate ILC2s in the lungs via the PI3K/AKT pathway in EA. Thus, using anti-IL-33 antibody could be a part of an effective treatment strategy for EA.

8.
Environ Sci Technol ; 57(6): 2435-2444, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36718593

RESUMEN

Microplastics (MPs) are abundant in air, but evidence of their deposition in the respiratory tract is limited. We conducted a prospective case series to investigate the deposition of microplastics in bronchoalveolar lavage fluid (BALF) and determine the internal dose of MPs via inhalation. Eighteen never-smokers aged 32-74 years who underwent fiberoptic bronchoscopy with BALF were recruited from Zhuhai, China. Control samples were obtained by performing the same procedure using isotonic saline instead of BALF. Laser direct infrared spectroscopy combined with scanning electron microscopy detected the presence and characteristics of MPs and quantitatively analyzed the microplastic in BALF and control samples. Concentrations of total and specific MPs in BALF and control samples were compared using the Wilcox test. Thirteen types of MPs were observed in 18 BALF samples. Polyethylene (PE, 86.1%) was the most abundant in BALF, followed by poly(ethylene terephthalate) (PET, 7.5%) and polypropylene (PP, 1.9%). Compared with the control samples, BALF had significantly higher concentrations of PE (median [IQR] of BALF: 0.38 [8.05] N/g), PET (0.26 [0.54] N/g), polyurethane (0.16 [0.24] N/g), PP (0.16 [0.11] N/g), and total MPs (0.91 [6.58] N/g). The presence of MPs in BALF provides novel evidence that MPs penetrate deep into the respiratory tract.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Líquido del Lavado Bronquioalveolar/química , Plásticos , Fumadores , Polipropilenos , Monitoreo del Ambiente
9.
J Immunol Res ; 2022: 8976179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157883

RESUMEN

Objective: Head and neck squamous cell carcinoma (HNSCC) is a highly heterotopic malignant tumor. Alternative splicing (AS) and RNA modification have been reported to be involved in tumorigenesis. Therefore, we constructed RNA modification-associated AS (RMA-AS) signature model to predict the prognosis of HNSCC. Methods: AS events and RNA-modified gene expression information were downloaded from TCGA-HNSCC database. Univariate Cox regression analysis was employed for analyzing prognosis-related AS events. RMA-AS events were obtained by constructing a coexpression network between RNA modification-associated genes and AS events using WGCNA package. The prognostic signatures were analyzed by LASSO, univariate Cox, and multivariate Cox regression. Kaplan-Meier survival analysis, proportional hazard model, and ROC curve were performed to verify the prognostic value. "ESTIMATE" R package, ssGSEA algorithm, and CIBERSORT method were used to detect immune microenvironment in HNSCC. Cytoscape was utilized to build a regulatory network of splicing factor-regulated RMA-AS. Results: There were 16,574 prognostic AS events and 4 differentially expressed RNA modification-associated genes in HNSCC. Based on RMA-AS events, we obtained a risk model consisting of 14 AS events, named RMA-AS_Score. The samples were divided into RMA-AS_Score high- and RMA-AS_Score low-risk groups, according to the risk score. The RMA-AS_Score high group was related to poor prognosis. Moreover, the RMA-AS_Score signature was an independent prognostic predictor and was related to tumor grade. Meanwhile, the AUC value of RMA-AS_Score was 0.652, which is better than other clinical characteristics. Besides, a nomogram prediction model of quantitative prognosis has also been developed, which has robust effectiveness in predicting prognosis. In addition, the prognostic signature was observably related to immune microenvironment and immune checkpoint. Finally, 14 splicing factors were identified and constructed into a network of splicing factor-regulated RMA-AS. Conclusion: We identified the RMA-AS signature of HNSCC. This signature could be treated as an independent prognostic predictor.


Asunto(s)
Empalme Alternativo , Neoplasias de Cabeza y Cuello , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Humanos , Pronóstico , ARN , Factores de Empalme de ARN , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral/genética
10.
Stem Cell Reports ; 17(10): 2318-2333, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150383

RESUMEN

Mesenchymal stromal cells (MSCs) transplantation could enhance bone repair. However, the cell fate of transplanted MSCs, in terms of their local distribution and spatial associations with other types of cells were poorly understood. Here, we developed a single-cell 3D spatial correlation (sc3DSC) method to track transplanted MSCs based on deep tissue microscopy of fluorescent nanoparticles (fNPs) and immunofluorescence of key proteins. Locally delivered fNP-labeled MSCs enhanced tibial defect repair, increased the number of stem cells and vascular maturity in mice. fNP-MSCs persisted in the defect throughout repair. But only a small portion of transplanted cells underwent osteogenic differentiation (OSX+); a significant portion has maintained their expression of mesenchymal stem cell and skeletal stem cell markers (SCA-1 and PRRX1). Our results contribute to the optimization of MSC-based therapies. The sc3DSC method may be useful in studying cell-based therapies for the regeneration of other tissue types or disease models.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Diferenciación Celular/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis/fisiología , Análisis Espacio-Temporal
11.
Front Cell Infect Microbiol ; 12: 961297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061864

RESUMEN

Tropheryma whipplei is the bacterium associated with Whipple's disease (WD), a chronic systemic infectious disease primarily involving the gastrointestinal tract. T. whipplei can also be detected in different body site of healthy individuals, including saliva and feces. Traditionally, Tropheryma whipplei has a higher prevalence in bronchoalveolar lavage fluid (BALF) of immunocompromised individuals. Few studies have explored the significance of the detection of T. whipplei in BALF. Herein, we retrospectively reviewed 1725 BALF samples which detected for metagenomic next-generation sequencing (mNGS) from March 2019 to April 2022 in Zhuhai, China. Seventy BALs (70/1725, 4.0%) from 70 patients were positive for T. whipplei. Forty-four patients were male with an average age of 50 years. The main symptoms included cough (23/70), expectoration (13/70), weight loss (9/70), and/or dyspnea (8/70), but gastrointestinal symptoms were rare. Chronic liver diseases were the most common comorbidity (n=15, 21.4%), followed by diabetes mellitus (n=13, 18.6%). Only nine patients (12.9%) were immunocompromised. Twenty-four patients (34.3%) were finally diagnosed with reactivation tuberculosis and 15 patients (21.4%) were diagnosed with lung tumors, including 13 primary lung adenocarcinoma and two lung metastases. Fifteen patients (21.4%) had pneumonia. Among the 20 samples, T. whipplei was the sole agent, and Mycobacterium tuberculosis complex was the most common detected other pathogens. Among the non-tuberculosis patients, 31 (31/46, 67.4%) had ground glass nodules or solid nodules on chest CT. Our study indicates that T. whipplei should be considered as a potential contributing factor in some lung diseases. For non-immunocompromised patients, the detection of T. whipplei also needs attention. The mNGS technology improves the detection and attention of rare pathogens. In the future, the infection, colonization, and prognosis of T. whipplei in lung still need to be studied.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Tropheryma , Líquido del Lavado Bronquioalveolar/microbiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tropheryma/genética
12.
FASEB J ; 36(10): e22530, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063128

RESUMEN

Despite the best treatment, approximately 10% of fractures still face undesirable repair and result in delayed unions or non-unions. Dynamic mechanical stimulation promotes bone formation, when applied at the correct time frame, with optimal loading magnitude, frequency, and repetition. Controlled mechanical loading significantly increases osteogenic cells during the matrix deposition phase of bone repair. In the bone defect, the blood vessel network guides the initial bone formation activities. A unique blood vessel subtype (Type H) exists in bone, which expresses high levels of CD31 and endomucin, and functions to couple angiogenesis and osteogenesis. However, how this form of controlled mechanical loading regulates the Type H vessels and promotes bone formation is still not clear. Sphingosine 1-phosphate (S1P) participates in the bone anabolic process and is a key regulator of the blood vessel. Its receptor, sphingosine 1-phosphate receptor 1 (S1Pr1), is a mechanosensitive protein that regulates vascular integrity. Therefore, we hypothesis that controlled anabolic mechanical loading promotes bone repair by acting on Type H vessels. To study the effect of S1Pr1 on loading induced-bone repair, we utilized a stabilized tibial defect model, which allows for the application of anabolic mechanical loading. Mechanical loading upregulated S1Pr1 within the entire defect, with up to 80% expressed in blood vessels, as observed by deep tissue imaging. Additionally, S1Pr1 antagonism by W146 inhibited the anabolic effects of mechanical loading. We showed that mechanical loading or activating S1Pr1 could induce YAP nuclear translocation, a key regulator in the cell's mechanical response, in endothelial cells (ECs) in vitro. Inhibition of S1Pr1 in endothelial cells by siRNA reduced loading-induced YAP nuclear translocation and expressions of angiogenic genes. In vivo, YAP nuclear translocation in Type H vessels was up-regulated after mechanical loading but was inhibited by antagonizing S1Pr1. S1Pr1 agonist, FTY720, increased bone volume and Type H vessel volume, similar to that of mechanical stimulation. In conclusion, controlled anabolic mechanical loading enhanced bone formation mainly through Type H vessels in a S1Pr1-dependent manner.


Asunto(s)
Células Endoteliales , Receptores de Lisoesfingolípidos , Regeneración Ósea , Células Endoteliales/metabolismo , Clorhidrato de Fingolimod/farmacología , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato
13.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957248

RESUMEN

The positioning algorithm based on received signal strength indication (RSSI) and the logarithmic distance path loss model (LDPLM) is widely used in indoor positioning scenarios due to its convenient detection and low costs. However, the classic LDPLM with fixed coefficients and fixed error estimation usually reduces the ranging accuracy, but it is rarely studied in previous literature. This study proposes an adaptive calibration ranging algorithm based on LDPLM, which consists of two parts: coefficient adaptive algorithm and error correction algorithm. The coefficient adaptive algorithm is derived by utilizing the error theory and the least squares method. The error correction algorithm is defined as the linear regression equation, in which coefficients are determined by the least squares method. In addition, to reduce the influence of RSSI's fluctuation on ranging accuracy, we propose a simple but effective filtering algorithm based on Gaussian. The experimental results show that compared with the classic LDPLM and polynomial fitting model, the ranging accuracy of the proposed algorithm is improved by 58% and 51%, respectively, and the positioning cumulative prediction error of the proposed model is reduced by 69% and 80%, respectively.

14.
ACS Biomater Sci Eng ; 8(8): 3498-3514, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35834297

RESUMEN

The advent of precision manufacturing has enabled the creation of pores in metallic scaffolds with feature size in the range of single microns. In orthopedic implants, pore geometries at the micron scale could regulate bone formation by stimulating osteogenic differentiation and the coupling of osteogenesis and angiogenesis. However, the biological response to pore geometry at the cellular level is not clear. As cells are sensitive to curvature of the pore boundary, this study aimed to investigate osteogenesis in high- vs low-curvature environments by utilizing computer numerical control laser cutting to generate triangular and circular precision manufactured micropores (PMpores). We fabricated PMpores on 100 µm-thick stainless-steel discs. Triangular PMpores had a 30° vertex angle and a 300 µm base, and circular PMpores had a 300 µm diameter. We found triangular PMpores significantly enhanced the elastic modulus, proliferation, migration, and osteogenic differentiation of MC3T3-E1 preosteoblasts through Yes-associated protein (YAP) nuclear translocation. Inhibition of Rho-associated kinase (ROCK) and Myosin II abolished YAP translocation in all pore types and controls. Inhibition of YAP transcriptional activity reduced the proliferation, pore closure, collagen secretion, alkaline phosphatase (ALP), and Alizarin Red staining in MC3T3-E1 cultures. In C166 vascular endothelial cells, PMpores increased the VEGFA mRNA expression even without an angiogenic differentiation medium and induced tubule formation and maintenance. In terms of osteogenesis-angiogenesis coupling, a conditioned medium from MC3T3-E1 cells in PMpores promoted the expression of angiogenic genes in C166 cells. A coculture with MC3T3-E1 induced tubule formation and maintenance in C166 cells and tubule alignment along the edges of pores. Together, curvature cues in micropores are important stimuli to regulate osteogenic differentiation and osteogenesis-angiogenesis coupling. This study uncovered key mechanotransduction signaling components activated by curvature differences in a metallic scaffold and contributed to the understanding of the interaction between orthopedic implants and cells.


Asunto(s)
Osteoblastos , Osteogénesis , Señales (Psicología) , Células Endoteliales/metabolismo , Mecanotransducción Celular , Miosinas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética
15.
Bone ; 161: 116449, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605959

RESUMEN

The nucleotide analog reverse-transcriptase inhibitor, tenofovir disoproxil fumarate (TDF), is widely used to treat hepatitis B virus (HBV) and human immunodeficiency virus infection (HIV). However, long-term TDF usage is associated with an increased incidence of bone loss, osteoporosis, fractures, and other adverse reactions. We investigated the effect of chronic TDF use on bone homeostasis and defect repair in mice. In vitro, TDF inhibited osteogenic differentiation and mineralization in MC3T3-E1 cells. In vivo, 8-week-old C57BL/6 female mice were treated with TDF for 38 days to simulate chronic medication. Four-point bending test and µCT showed reduced bone biomechanical properties and microarchitecture in long bones. To investigate the effects of TDF on bone defect repair, we utilized a bilateral tibial monocortical defect model. µCT showed that TDF reduced new bone mineral tissue and bone mineral density (BMD) in the defect. To verify whether mechanical stimulation may be a useful treatment to counteract the negative bone effects of TDF, controlled dynamic mechanical loading was applied to the whole tibia during the matrix deposition phase on post-surgery days (PSDs) 5 to 8. Second harmonic generation (SHG) of collagen fibers and µCT showed that the reduction of new bone volume and bone mineral density caused by TDF was reversed by mechanical loading in the defect. Immunofluorescent deep tissue imaging showed that chronic TDF treatment reduced the number of osteogenic cells and the volume of new vessels. In addition, chronic TDF treatment inhibited the expressions of periostin and ß-catenin, but increased the expression of sclerostin. Both negative effects were reversed by mechanical loading. Our study provides strong evidence that chronic use of TDF exerts direct and inhibitory impacts on bone repair, but appropriate mechanical loading could reverse these adverse effects.


Asunto(s)
Osteogénesis , Inhibidores de la Transcriptasa Inversa , Animales , Densidad Ósea , ARN Polimerasas Dirigidas por ADN/farmacología , Femenino , Ratones , Ratones Endogámicos C57BL , Nucleótidos , Inhibidores de la Transcriptasa Inversa/farmacología , Tenofovir/efectos adversos , beta Catenina
16.
Mol Biol Rep ; 49(6): 4989-4997, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35083616

RESUMEN

BACKGROUND: Lung cancer is one of the most common malignancies worldwide. Also, it is the leading cause of cancer morbidity and mortality in men. Despite advances in lung cancer diagnosis and treatment, novel approaches are strongly needed to promote early diagnosis and effective treatment of lung cancer. Presently, accumulating data reveal that long noncoding RNAs (lncRNAs) are differentially enriched in exosomes and mediate multiple biological processes in lung cancer, suggesting the potential application of exosomal lncRNAs as diagnostic biomarkers and therapeutic targets. CONCLUSION: In this review, we described the emerging roles of lncRNAs specifically sorted into exosomes in lung cancer. We discussed the current knowledge of the exosomal lncRNA sorting mechanism and highlighted opportunities for exosome-derived lncRNAs as biomarkers in clinical practice. In particular, we systematically summarized the biological functions of exosomal lncRNAs in lung cancer.


Asunto(s)
Exosomas , Neoplasias Pulmonares , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Exosomas/genética , Exosomas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , ARN Largo no Codificante/genética
17.
J Asthma ; 59(9): 1703-1711, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34346277

RESUMEN

BACKGROUND: There is a lack of information about regulatory T cells (Tregs) and inflammatory phenotypes in patients with asthma. In this study, we aimed to compare the characteristics of Tregs in patients with eosinophilic asthma. METHODS: Forty healthy and 120 stable asthmatic patients were recruited. Sputum and airway inflammatory phenotypes were assessed, and all patients were followed for one year. Human peripheral blood mononuclear cells (PBMCs) were collected and stimulated with phytohemagglutinin (PHA) and Dermatophagoides farina (Derp) to detect CD4+CD25+FOXP3+T cells and Foxp3 levels. Interleukin (IL)-13, IL-5, IL-17, IL-9, and interferon (IFN)-γ levels were measured. RESULTS: 38.33% of patients had eosinophilic asthma, 13.33% had neutrophilic asthma, 6.67% had mixed granulocytic asthma, and 41.67% had pauci-granulocytic asthma. The eosinophilic asthma patients had a relatively high Asthma Control Test (ACT) score, an increased prediction and improvement FEV1 (%) rate, and elevated total IgE serum levels (P < 0.05). T helper cell 2 (Th2) cytokines IL-13 and IL-5 were predominantly expressed in the eosinophilic phenotype, while the Th1 cytokine IFN-γ and Th17 cytokine were found in the neutrophilic phenotype. IL-10 was significantly lower in eosinophilic asthmatic patients compared to the controls (P < 0.05). CD4+CD25+FOXP3+T cells (%Tregs) and Foxp3 gene expression in the PHA stimulated eosinophilic asthma samples were significantly lower compared to the control samples (P < 0.05). The airway inflammation phenotypes remained stable after one-year of therapy. CONCLUSION: Asthmatic patients with the eosinophilic phenotype in this study were deficient in Tregs, as characterized by a Th2 cell-biased pattern.


Asunto(s)
Asma , Eosinofilia Pulmonar , Asma/metabolismo , Citocinas/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Interleucina-5/metabolismo , Leucocitos Mononucleares/metabolismo , Linfocitos T Reguladores/metabolismo
18.
FASEB J ; 35(12): e22033, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34739146

RESUMEN

The long-term use of adrenergic medication in treating various conditions, such as asthma, increases the chances of bone fracture. Dynamic mechanical loading at a specific time is a method for improving bone quality and promoting healing. Therefore, we hypothesized that precisely controlling the mechanical environment can contribute to the alleviation of the negative effects of chronic treatment with the common asthma drug terbutaline, which is a ß2-adrenergic receptor agonist that facilitates bone homeostasis and defect repair through its anabolic effect on osteogenic cells. Our in vitro results showed that terbutaline can directly inhibit osteogenesis by impairing osteogenic differentiation and mineralization. Chronic treatment in vivo was simulated by administering terbutaline to C57BL/6J mice for 4 weeks before bone defect surgery and mechanical loading. We utilized a stabilized tibial defect model, which allowed the application of anabolic mechanical loading. During homeostasis, chronic terbutaline treatment reduced the bone formation rate, the fracture toughness of long bones, and the concentrations of bone formation markers in the sera. During defect repair, terbutaline decreased the bone volume, type H vessel, and total blood vessel volume. Terbutaline treatment reduced the number of osteogenic cells. Periostin, which was secreted mainly by Prrx1+ osteoprogenitors and F4/80+ macrophages, was inhibited by treating the bone defect with terbutaline. Interestingly, controlled mechanical loading facilitated the recovery of bone volume and periostin expression and the number of osteogenic cells within the defect. In conclusion, mechanical loading can rescue negative effects on new bone accrual and repair induced by chronic terbutaline treatment.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Densidad Ósea , Regeneración Ósea , Diferenciación Celular , Receptores Adrenérgicos beta 2/química , Estrés Mecánico , Terbutalina/farmacología , Animales , Fenómenos Biomecánicos , Femenino , Homeostasis , Ratones , Ratones Endogámicos C57BL
19.
Clin Transl Allergy ; 11(7): e12056, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34484687

RESUMEN

BACKGROUND: COVID-19 is a highly contagious respiratory disease caused by the SARS-CoV-2 virus. Patients with severe disease have a high fatality rate and face a huge medical burden due to the need for invasive mechanical ventilation. Hypoxic respiratory failure is the major cause of death in these patients. There are currently no specific anti-SARS-CoV-2 drugs, and the effect of corticosteroids is still controversial. METHODS: The clinical data of 102 COVID-19 patients, including 27 patients with severe disease, were analyzed. The serum levels of total IgE and anti-SARS-CoV-2 specific IgE were compared in healthy controls and COVID-19 patients, changes in the level of anti-SARS-CoV-2 specific IgE and clinical response to methylprednisolone (MP) treatment were analyzed, and the effect of high-dose/short-term MP therapy for patients with critical illness and respiratory failure was determined. RESULTS: COVID-19 patients had elevated serum levels of anti-SARS-CoV-2 specific IgE, and patients with severe disease, especially critical illness, had even higher levels. Application of short-term/high-dose MP significantly reduced the level of these IgE antibodies and also blocked the progression of hypoxic respiratory failure. Hypoxic respiratory failure in patients with COVID-19 is related to pulmonary hypersensitivity. CONCLUSIONS: Hypersensitivity in the lungs is responsible for acute respiratory failure in COVID-19 patients. Application of high-dose/short-term MP appears to be an effective life-saving method for COVID-19 patients who have hypoxic respiratory failure.

20.
J Oncol ; 2021: 9813773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349799

RESUMEN

Lung cancer remains the leading cause of cancer-related death worldwide. Recently, extracellular vesicles such as exosomes have attracted considerable interest both as a source for theranostic biomarkers and an essential participant in lung cancer progression. However, how specific exosomal cargos, such as noncoding RNAs, are selectively packaged into exosomes and promote lung cancer progression remains unclear. In this study, we identified miR-665 as the most elevated exosomal miRNA from both non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. We further demonstrated that lncRNA SCIRT was also increased in cancer cell exosomes and may facilitate the exosomal loading of miR-665 with the help of hnRNPA1. As a consequence, exosomal miR-665 promoted lung cancer cell invasion and migration by targeting Notch downstream transcription factor HEYL. In addition, we found that miR-665 and SCIRT were significantly upregulated in tumor tissue and plasma of patients with lung cancer, and both of them showed increased expression in metastatic disease samples. Our findings suggest that the exosomal transferring of miR-665 and SCIRT is a functional and mechanism-driven pathway that contributes to cancer progression and, thus, may provide novel diagnostic and therapeutic targets for lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...