Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202401833, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38429247

RESUMEN

Organic scintillators have recently attracted growing attention for X-ray detection in industrial and medical applications. However, these materials still face critical obstacles of low attenuation efficiency and/or inefficient triplet exciton utilization. Here we developed a new category of organogold(III) complexes, Tp-Au-1 and Tp-Au-2, through adopting a through-space interaction motif to realize high X-ray attenuation efficiency and efficient harvesting of triplet excitons for emission. Thanks to the efficient through-space charge transfer process, this panel of complexes achieved higher photoluminescence quantum yield and shorter radiative lifetimes compared with the through-bond reference complexes. Inspiringly, these organogold(III) complexes exhibited polarity-dependent emission origins: thermally activated delayed fluorescence and/or phosphorescence. Under X-ray irradiation, Tp-Au-2 manifested intense radioluminescence together with a record-high scintillation light yield of 77,600 photons MeV-1 for organic scintillators. The resulting scintillator screens demonstrated high-quality X-ray imaging with >16.0 line pairs mm-1 spatial resolution, outstripping most organic and inorganic scintillators. This finding provides a feasible strategy for the design of superior organic X-ray scintillators.

2.
ACS Appl Mater Interfaces ; 16(12): 15640-15648, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488314

RESUMEN

The noble-metal-free surface-enhanced Raman scattering (SERS) substrates have gained significant attention due to their abundant sources, signal uniformity, biocompatibility, and chemical stability. However, the lack of controllable synthesis and fabrication methods for high-SERS-activity noble-metal-free substrates hinders their practical applications. In this study, we demonstrate the use of a femtosecond laser direct writing technique to precisely manipulate and modify microstructures, resulting in enhanced SERS signals from Sb2S3 nonmetal-oxide semiconductor materials. Compared with unpatterned Sb2S3 samples, the Sb2S3 microstructures exhibited up to a 16-fold increase in Raman scattering intensity. Interestingly, our results indicate that the femtosecond laser can induce a transformation in the crystalline state of Sb2S3 and significantly enhance the Raman spectrum signal within the Sb2S3 microstructures. This enhancement is also highly dependent on the period and depth of the microstructures, possibly due to the cavity effects, resulting in a stronger local field enhancement.

3.
Angew Chem Int Ed Engl ; 63(20): e202402704, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38414169

RESUMEN

Thermally activated delayed fluorescence (TADF) emitters featuring through-space charge transfer (TSCT) can be excellent candidates for piezochromic luminescent (PCL) materials due to their structural dynamics. Spatial donor-acceptor (D-A) stacking arrangements enable the modulation of inter- and intramolecular D-A interactions, as well as spatial charge transfer states, under varying pressure conditions. Herein, we demonstrate an effective approach toward dynamic reversible full-color PCL materials with TSCT-TADF characteristics. Their single crystals exhibit a full-color-gamut PCL process spanning a range of 170 nm. Moreover, the TSCT-TADF-PCL emitters display a unity photoluminescence quantum yield, and show promising application in X-ray scintillator imaging.

4.
J Exp Clin Cancer Res ; 43(1): 50, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365726

RESUMEN

BACKGROUND: Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS: We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS: In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS: Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Carcinogénesis/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Ratones Desnudos , Músculos/metabolismo , Músculos/patología , Proteolisis , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
5.
Adv Mater ; 36(15): e2309487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174652

RESUMEN

Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air.

6.
Int J Stroke ; : 17474930241228203, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38229443

RESUMEN

BACKGROUND: High-resolution magnetic resonance vessel wall imaging (HRMR-VWI) is a promising technique for identifying intracranial vulnerable plaques beyond lumen narrowing. However, the association between HRMR-VWI characteristics and recurrent stroke remains uncertain. AIMS: This study aimed to investigate the association between HRMR-VWI characteristics and recurrent ipsilateral stroke in patients with symptomatic intracranial atherosclerotic steno-occlusive disease (ICAS). METHODS: This multicenter, observational study recruited first-ever acute ischemic stroke patients attributed to ICAS (>50% stenosis or occlusion) within 7 days after onset. Participants were assessed by multiparametric magnetic resonance imaging (MRI) including diffusion-weighted imaging, three-dimension time-of-flight magnetic resonance angiography, and three-dimensional T1-weighted HRMR-VWI. The patients were recommended to receive best medical therapy and were systematically followed up for 12 months. The association between HRMR-VWI characteristics and the time to recurrent ipsilateral stroke was investigated by univariable and multivariable analysis. RESULTS: Two hundred and fifty-five consecutive patients were enrolled from 15 centers. The cumulative 12 month ipsilateral recurrence incidence was 4.1% (95% confidence interval (CI): 1.6-6.6%). Patients with recurrent ipsilateral stroke exhibited higher rates of intraplaque hemorrhage (IPH) (30.0% vs 6.5%) and eccentric plaque (90.0% vs 48.2%), and lower occurrence of occlusive thrombus (10.0% vs 23.7%). Plaque length (5.69 ± 2.21 mm vs 6.67 ± 4.16 mm), plaque burden (78.40 ± 7.37% vs 78.22 ± 8.32%), degree of stenosis (60.25 ± 18.95% vs 67.50% ± 22.09%) and remodeling index (1.07 ± 0.27 vs 1.03 ± 0.35) on HRMR-VWI did not differ between patients with and without recurrent ipsilateral stroke. In the multivariable Cox regression analysis, IPH (hazard ratio: 6.64, 95% CI: 1.23-35.8, p = 0.028) was significantly associated with recurrent ipsilateral stroke after adjustment.Conclusions:Our results suggest intraplaque hemorrhage (IPH) is significantly associated with recurrent ipsilateral stroke and has potential value in the selection of patients for aggressive treatment strategies. DATA ACCESS STATEMENT: Data from this study are available and can be accessed upon request.

7.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293095

RESUMEN

Radiotherapy (RT), is a fundamental treatment for malignant tumors and is used in over half of cancer patients. As radiation can promote anti-tumor immune effects, a promising therapeutic strategy is to combine radiation with immune checkpoint inhibitors (ICIs). However, the genetic determinants that impact therapeutic response in the context of combination therapy with radiation and ICI have not been systematically investigated. To unbiasedly identify the tumor intrinsic genetic factors governing such responses, we perform a set of genome-scale CRISPR screens in melanoma cells for cancer survival in response to low-dose genotoxic radiation treatment, in the context of CD8 T cell co-culture and with anti-PD1 checkpoint blockade antibody. Two actin capping proteins, Capza3 and Capg, emerge as top hits that upon inactivation promote the survival of melanoma cells in such settings. Capza3 and Capg knockouts (KOs) in mouse and human cancer cells display persistent DNA damage due to impaired homology directed repair (HDR); along with increased radiation, chemotherapy, and DNA repair inhibitor sensitivity. However, when cancer cells with these genes inactivated were exposed to sublethal radiation, inactivation of such actin capping protein promotes activation of the STING pathway, induction of inhibitory CEACAM1 ligand expression and resistance to CD8 T cell killing. Patient cancer genomics analysis reveals an increased mutational burden in patients with inactivating mutations in CAPG and/or CAPZA3, at levels comparable to other HDR associated genes. There is also a positive correlation between CAPG expression and activation of immune related pathways and CD8 T cell tumor infiltration. Our results unveil the critical roles of actin binding proteins for efficient HDR within cancer cells and demonstrate a previously unrecognized regulatory mechanism of therapeutic response to radiation and immunotherapy.

8.
Adv Mater ; 36(3): e2308240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967309

RESUMEN

Low-bandgap (LBG, Eg  ≈1.25 eV) tin-lead (Sn-Pb) perovskite solar cells (PSCs) play critical roles in constructing efficient all-perovskite tandem solar cells (TSCs) that can surpass the efficiency limit of single-junction solar cells. However, the traditional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL) in LBG PSCs usually restricts device efficiency and stability. Here, a strategy of employing 2-aminoethanesulfonic acid (i.e., taurine) as the interface bridge to fabricate efficient HTL-free LBG PSCs with improved optoelectronic properties of the perovskite absorbers at the buried contacts is reported. Taurine-modified ITO substrate has lower optical losses, better energy level alignment, and higher charge transfer capability than PEDOT:PSS HTL, leading to significantly improved open-circuit voltage (VOC ) and short-circuit current density of corresponding devices. The best-performing LBG PSC with a power conversion efficiency (PCE) of 22.50% and an impressive VOC of 0.911 V is realized, enabling all-perovskite TSCs with an efficiency of 26.03%. The taurine-based HTL-free TSCs have highly increased stability, retaining more than 90% and 80% of their initial PCEs after constant operation under 1-sun illumination for 600 h and under 55 °C thermal stress for 950 h, respectively. This work provides a facile strategy for fabricating efficient and stable perovskite devices with a simplified HTL-free architecture.

9.
Small ; 20(4): e2304336, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712103

RESUMEN

Recently, metal 1halide perovskites have shown compelling optoelectronic properties for both light-emitting devices and scintillation of ionizing radiation. However, conventional lead-based metal halide perovskites are still suffering from poor material stability and relatively low X-ray light yield. This work reports cadmium-based all-inorganic metal halides and systematically investigates the influence of the metal ion incorporation on the optoelectronic properties. This work introduces the bi-metal ion incorporation strategy and successfully enhances the photoluminescence quantum yield (98.9%), improves thermal stability, and extends the photoluminescence spectra, which show great potential for white light emission. In addition, the photoluminescent decay is also modulated with single metal ion incorporation, the charge carrier lifetime is successfully reduced to less than 1 µs, and the high luminescent efficiency and X-ray light yield (41 000 photons MeV-1 ) are maintained. Then, these fast scintillators are demonstrated for high-speed light communication and sensitive X-ray detection and imaging.

11.
Nat Biomed Eng ; 8(2): 132-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37430157

RESUMEN

Engineering cells for adoptive therapy requires overcoming limitations in cell viability and, in the efficiency of transgene delivery, the duration of transgene expression and the stability of genomic integration. Here we report a gene-delivery system consisting of a Sleeping Beauty (SB) transposase encoded into a messenger RNA delivered by an adeno-associated virus (AAV) encoding an SB transposon that includes the desired transgene, for mediating the permanent integration of the transgene. Compared with lentiviral vectors and with the electroporation of plasmids of transposon DNA or minicircle DNA, the gene-delivery system, which we named MAJESTIC (for 'mRNA AAV-SB joint engineering of stable therapeutic immune cells'), offers prolonged transgene expression, as well as higher transgene expression, therapeutic-cell yield and cell viability. MAJESTIC can deliver chimeric antigen receptors (CARs) into T cells (which we show lead to strong anti-tumour activity in vivo) and also transduce natural killer cells, myeloid cells and induced pluripotent stem cells with bi-specific CARs, kill-switch CARs and synthetic T-cell receptors.


Asunto(s)
Dependovirus , Transposasas , Transposasas/genética , Transposasas/metabolismo , Dependovirus/genética , Elementos Transponibles de ADN/genética , ARN Mensajero/genética , Técnicas de Transferencia de Gen
12.
Small ; 20(10): e2308895, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875777

RESUMEN

Antimony-based chalcogenides have emerged as promising candidates for next-generation thin film photovoltaics. Particularly, binary Sb2 S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low-cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2 S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time-consuming. In this work, Ag ions are introduced within the Sb2 S3 sol-gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2 S3 . The crystallinity of the Sb2 S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open-circuit voltage of the Ag incorporated Sb2 S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2 S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next-generation solution-processed photovoltaics.

14.
Clin Nucl Med ; 48(10): e477-e479, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37682615

RESUMEN

ABSTRACT: A 44-year-old man who presented with progressive right limb weakness was diagnosed with ischemic stroke. He was referred for 18F-DPA-714 PET/CT for evaluation of the disease. 18F-DPA-714 PET/CT showed increased uptake of the intracranial thrombus. This DPA-714-avid thrombus highly suggested the involvement of immune cells in the extension of the clot resulting in neurological deterioration. This present case suggested that 18F-DPA-714 PET might be a promising tracer in visualizing thromboinflammation in vivo.


Asunto(s)
Accidente Cerebrovascular , Trombosis , Masculino , Humanos , Adulto , Tromboinflamación , Inflamación/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Accidente Cerebrovascular/diagnóstico por imagen
15.
Innovation (Camb) ; 4(4): 100460, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485084

RESUMEN

Transfer printing of small-molecular organic semiconductors often faces challenges due to surface adhesion mismatch. Here, we developed a sacrificing-layer-assisted transfer printing technique for the deposition of small-molecular thin films. High-boiling-point ethylene glycol (EG) was doped in aqueous solution poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as the sacrificing layer to manipulate residual water in film, which allowed chlorobenzene solution to spontaneously spread and form uniform film. The residual water guaranteed film delamination from the stamp, allowing for its transfer onto various substrates and seeding layers. As a proof of concept, laterally conductive organic photodetectors using recyclable EG-PEDOT:PSS electrodes and a small-molecular active layer were consecutively fabricated via transfer printing in ambient air. The resulting device exhibited a high on/off ratio of 711 and a fast rise time of 0.5 ms. Notably, the polymer electrode and the bulk heterojunction demonstrated unique repairability and recyclability.

16.
ACS Appl Mater Interfaces ; 15(28): 33744-33750, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37431755

RESUMEN

X-ray detectors based on conventional semiconductors with large atomic numbers are suffering from the poor stability under a high dose rate of ionizing irradiation. In this work, we demonstrate that a wide band gap ceramic-boron nitride with small atomic numbers could be used for sensitive X-ray detection. Boron nitride samples showed excellent resistance to ionizing radiation, which have been systematically studied with the neutron- and electron-aging experiments. Then, we fully analyzed the influence of these aging effects on the fundamental properties of boron nitride. Interestingly, we found that the boron nitride samples could maintain relatively good charge transport properties even after large dose of neutron irradiation. The fabricated X-ray detectors showed decent performance metrics, and the neutron-aged boron nitride even showed improved operational stability under continuous X-ray irradiation, suggesting the great potential for real applications.

17.
Eur J Neurol ; 30(10): 3172-3181, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452734

RESUMEN

BACKGROUND AND PURPOSE: The development of high-resolution magnetic resonance imaging (HR-MRI) has enabled submillimeter-level evaluation of intracranial artery plaque and luminal thrombus. We sought to investigate the value of HR-MRI in assessing the pathogenesis of acute intracranial artery thrombus. METHODS: We examined the presence of intracranial thrombus on three-dimensional T1-weighted HR-MRI in acute ischemic stroke patients with intracranial artery occlusion on magnetic resonance angiography. We defined two thrombus-related HR-MRI features (peri-thrombus plaque and distal residual flow beyond the thrombus) and analyzed their association with potential embolic sources. RESULTS: Luminal thrombus and a shrunken artery without luminal thrombus were detected in 162 (96.4%) and six (3.6%) of 168 patients with intracranial artery occlusion, respectively. Among 111 patients with culprit major artery thrombus, peri-thrombus plaques were observed in 46.8% and distal residual flow beyond the thrombus in 64.0%. Patients with peri-thrombus plaque had a higher prevalence of diabetes (44.2% vs. 25.4%; p = 0.037), a lower prevalence of potential sources of cardioembolism (0% vs. 16.9%; p = 0.002), and a nonsignificantly lower prevalence of potential embolic sources from extracranial arteries (9.6% vs. 20.3%; p = 0.186) than those without. Patients with distal residual flow beyond the thrombus had a lower prevalence of potential sources of cardioembolism (1.4% vs. 22.5%; p < 0.001) and smaller infarct volumes (5.0 [1.4-12.7] mL vs. 16.6 [2.4-94.6] mL; p = 0.012) than those without. CONCLUSIONS: Our study showed that HR-MRI helps clarify the pathogenesis of acute intracranial artery thrombus. The presence of peri-thrombus plaque and distal residual flow beyond the thrombus favor the stroke mechanism of atherosclerosis rather than cardioembolism.


Asunto(s)
Arteriosclerosis Intracraneal , Trombosis Intracraneal , Accidente Cerebrovascular Isquémico , Placa Aterosclerótica , Accidente Cerebrovascular , Trombosis , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/complicaciones , Angiografía por Resonancia Magnética/efectos adversos , Angiografía por Resonancia Magnética/métodos , Placa Aterosclerótica/complicaciones , Placa Aterosclerótica/diagnóstico por imagen , Arterias/patología , Trombosis/diagnóstico por imagen , Trombosis Intracraneal/complicaciones , Trombosis Intracraneal/diagnóstico por imagen , Arteriosclerosis Intracraneal/complicaciones , Arteriosclerosis Intracraneal/diagnóstico por imagen
18.
J Phys Chem Lett ; 14(24): 5517-5523, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37290010

RESUMEN

Chalcogenide-based semiconductors are emerging as a set of highly promising candidates for optoelectronic devices, owing to their low toxicity, cost-effectiveness, exceptional stability, and tunable optoelectronic properties. Nonetheless, the limited understanding of charge recombination mechanisms and trap states of these materials is impeding their further development. To fill this gap, we conducted a comprehensive study of bismuth-based chalcogenide thin films and systematically investigated the influence of post-treatments via time-resolved microwave conductivity and temperature-dependent photoluminescence. The key finding in this work is that post-treatment with Bi could effectively enhance the crystallinity and charge-carrier mobility. However, the carrier density also increased significantly after the Bi treatment. On the contrary, post-treatment of evaporated Bi2S3 thin films with sulfur could effectively increase the carrier lifetime and mobility by passivating the trap states on the grain boundaries, which is also consistent with the enhanced radiative recombination efficiency.

19.
Adv Mater ; 35(35): e2303611, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358067

RESUMEN

Over recent years, Mn(II)-organic materials showing circularly polarized luminescence (CPL) have attracted great interest because of their eco-friendliness, cheapness, and room temperature phosphorescence. Using the helicity design strategy, herein, chiral Mn(II)-organic helical polymers are constructed featuring long-lived circularly polarized phosphorescence with exceptionally high glum and ΦPL magnitudes of 0.021% and 89%, respectively, while remaining ultrarobust toward humidity, temperature, and X-rays. Equally important, it is disclosed for the first time that the magnetic field has a remarkably high negative effect on CPL for Mn(II) materials, suppressing the CPL signal by 4.2-times at B ⃗ $\vec{B}$  = 1.6 T. Using the designed materials, UV-pumped CPL light-emitting diodes are fabricated, demonstrating enhanced optical selectivity under right- and left-handed polarization conditions. On top of all this, the reported materials display bright triboluminescence and excellent X-ray scintillation activity with a perfectly linear X-ray dose rate response up to 174 µGyair  s-1 . Overall, these observations significantly contribute to the CPL phenomenon for multi-spin compounds and promote the design of highly efficient and stable Mn(II)-based CPL emitters.

20.
BMC Psychiatry ; 23(1): 367, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231397

RESUMEN

BACKGROUND: This study explored the feasibility of using EEG gamma-band (30-49 Hz) power as an index of cue-elicited craving in METH-dependent individuals. METHODS: Twenty-nine participants dependent on methamphetamine (METH) and 30 healthy participants were instructed to experience a METH-related virtual reality (VR) social environment. RESULTS: Individuals with METH dependence showed significantly stronger self-reported craving and higher gamma power in a VR environment than healthy individuals. In the METH group, the VR environment elicited a significant increase in gamma power compared with the resting state. The METH group then received a VR counterconditioning procedure (VRCP), which was deemed useful in suppressing cue-induced reactivity. After VRCP, participants showed significantly lower self-reported craving scores and gamma power when exposed to drug-related cues than the first time. CONCLUSIONS: These findings suggest that the EEG gamma-band power may be a marker of cue-induced reactivity in patients with METH dependence.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Humanos , Ansia , Señales (Psicología) , Electroencefalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...