Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401624, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773869

RESUMEN

The poor machinability of halide perovskite crystals severely hampered their practical applications. Here a high-throughput growth method is reported for armored perovskite single-crystal fibers (SCFs). The mold-embedded melt growth (MEG) method provides each SCF with a capillary quartz shell, thus guaranteeing their integrality when cutting and polishing. Hundreds of perovskite SCFs, exemplified by CsPbBr3, CsPbCl3, and CsPbBr2.5I0.5, with customized dimensions (inner diameters of 150-1000 µm and length of several centimeters), are grown in one batch, with all the SCFs bearing homogeneity in shape, orientation, and optical/electronic properties. Versatile assembly protocols are proposed to directly integrate the SCFs into arrays. The assembled array detectors demonstrated low-level dark currents (< 1 nA) with negligible drift, low detection limit (< 44.84 nGy s-1), and high sensitivity (61147 µC Gy-1 cm-2). Moreover, the SCFs as isolated pixels are free of signal crosstalk while showing uniform X-ray photocurrents, which is in favor of high spatial resolution X-ray imaging. As both MEG and the assembly of SCFs involve none sophisticated processes limiting the scalable fabrication, the strategy is considered to meet the preconditions of high-throughput productions.

2.
Angew Chem Int Ed Engl ; 62(19): e202302435, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892282

RESUMEN

Perovskite single crystals and polycrystalline films have complementary merits and deficiencies in X-ray detection and imaging. Herein, we report preparation of dense and smooth perovskite microcrystalline films with both merits of single crystals and polycrystalline films through polycrystal-induced growth and hot-pressing treatment (HPT). Utilizing polycrystalline films as seeds, multi-inch-sized microcrystalline films can be in situ grown on diverse substrates with maximum grain size reaching 100 µm, which endows the microcrystalline films with comparable carrier mobility-lifetime (µτ) product as single crystals. As a result, self-powered X-ray detectors with impressive sensitivity of 6.1×104  µC Gyair -1 cm-2 and low detection limit of 1.5 nGyair s-1 are achieved, leading to high-contrast X-ray imaging at an ultra-low dose rate of 67 nGyair s-1 . Combining with the fast response speed (186 µs), this work may contribute to the development of perovskite-based low-dose X-ray imaging.

3.
Chem Commun (Camb) ; 59(23): 3403-3406, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36852483

RESUMEN

Herein, we report a facile method for growing CsPbBr3 cube and prism microcrystals by microspacing in-air sublimation. Morphology-dependent photoluminescence behavior investigation reveals that the CsPbBr3 cubes show higher photoluminescence quantum yield and longer PL lifetime than the prisms. In contrast, CsPbBr3 prisms exhibit more considerable light-induced photoluminescence enhancement.

4.
Small Methods ; 7(4): e2201374, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36808831

RESUMEN

Fabrication of single-crystalline organic semiconductor patterns is of key importance to enable practical applications. However due to the poor controllability on nucleation locations and the intrinsic anisotropic nature of single-crystals, growth of single-crystal patterns with homogeneous orientation is a big challenge especially by the vapor method. Herein a vapor growth protocol to achieve patterned organic semiconductor single-crystals with high crystallinity and uniform crystallographic orientation is presented. The protocol relies on the recently invented microspacing in-air sublimation assisted with surface wettability treatment to precisely pin the organic molecules at desired locations, and inter-connecting pattern motifs to induce homogeneous crystallographic orientation. Single-crystalline patterns with different shapes and sizes, and uniform orientation are demonstrated exemplarily by using 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT). Field-effect transistor arrays fabricate on the patterned C8-BTBT single-crystal patterns show uniform electrical performance: a 100% yield with an average mobility of 6.28 cm2  V-1  s-1 and in a 5 × 8 array. The developed protocols overcome the uncontrollability of the isolated crystal patterns in vapor growth on non-epitaxial substrates, making it possible to align the anisotropic electronic nature of single-crystal patterns in large-scale devices integration.

5.
Mater Horiz ; 10(1): 197-208, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36331106

RESUMEN

Although room-temperature phosphorescence (RTP) organic materials are a widely-studied topic especially popular in recent decades, long-lived RTP able to fulfil broad time-resolved application requirements reliably, are still rare. Polymeric materials doped with phosphorescent chromophores generally feature high productivity and diverse applications, compared with their crystalline counterparts. This study proves that pure polycyclic aromatic hydrocarbons (PAHs) may even outperform chromophores containing hetero- or heavy-atoms. Full-color (blue, green, orange and red) polymer-PAHs with lifetimes >5000 ms under ambient conditions are constructed, which provide impressive values compared to the widely reported polymer-based RTP materials in the respective color regions. The polymer-PAHs could be fabricated on a large-scale using various methods (solution, melt and in situ polymerization), be processed into diverse forms (writing ink, fibers, films, and complex 3D architectures), and be used in a range of applications (anti-counterfeiting, information storage, and oxygen sensors). Plus their environmental (aqueous) stability makes the polymer-PAHs a promising option to expand the portfolio of organic RTPs.

6.
ACS Appl Mater Interfaces ; 12(46): 51616-51627, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33164486

RESUMEN

It has been proved that bulk single crystals of a halide perovskite behave much better than its polycrystalline counterparts in multiple application scenarios. Thus, the growth of large-sized and high-quality single crystals is significant to guarantee their ultimate device performances. Here, based on our recently invented settled temperature and controlled antisolvent diffusion system, improvements achieved in this work include the following: (1) We modified the growth system to optimize the control over both mass and heat transport to alleviate defect formation. State-of-the-art-quality MAPbBr3 crystals were grown, and from the bulk crystals, differently oriented crystalline wafers were fabricated with the full width at half-maximum of X-ray rocking curves of 40-86 arcsec. (2) The optical band gaps revealed no anisotropy on differently oriented wafers, whereas the refractive index and extinction coefficient exhibited obvious anisotropy. (3) Angle-resolved polarized Raman spectra demonstrate distinct in-plane anisotropy on (100) and (110) wafers but not on the (111) wafer. The equilibrium MA+ orientations are deduced to adopt the <111> direction with the antiparallel MA+ orientation between adjacent domains. (4) Radiation detectors fabricated on differently oriented wafers proved photoresponse anisotropy to both visible and X-ray radiation, following a general order of (100) > (110) > (111). Because anisotropy is an inevitable issue for various applications employing crystalline materials, this study, based on the clarification of the debatable intrinsic dipole configuration in the pseudocubic crystal lattice, will provide quantitative information on physicochemical property anisotropy and subsequently facilitate optimization of device performance referring to crystal orientations of halide perovskite crystals.

7.
BMC Public Health ; 20(1): 615, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366229

RESUMEN

BACKGROUND: In China, home-based healthcare/rehabilitation has always been advocated by the government and is the most prevalent healthcare pattern. However, there is currently no data on how many each product has been purchased, and it is not clear what factors are associated with their use. The research aims to clarify the current practices and attitudes of the elderly on such matters, and further analyze their influence factors. METHODS: This pilot study consisted of two-round regional survey, conducted from July 25 to August 3, 2015 and July 20 to August 10, 2018 respectively. Both surveys released on-site paper questionnaires and collected after filling out in different communities. RESULTS: Two hundred forty-four valid questionnaires from 52 communities were collected. Compared with 2015 (30.8%), the number of people who did not purchase home healthcare devices in the same area decreased in 2018 (28.2%). Hemopiezometer (44.3%), glucometer (18.4%), massager (21.3%) and walking devices (19.3%) are the four main types of products that urbanites are most willing to buy. In addition, users' age group, education level, and income level were significantly correlated with the purchase of certain products. CONCLUSIONS: The types of home healthcare devices purchased by respondents are consistent with the distribution of chronic diseases of urban residents in China. The analysis of product brands also revealed the existing problems and huge growth space of the industry market, which also requires the government to introduce relevant policies and measures to regulate the market and accelerate the development of the industry.


Asunto(s)
Comportamiento del Consumidor/estadística & datos numéricos , Anciano Frágil/estadística & datos numéricos , Dispositivos de Autoayuda/economía , Dispositivos de Autoayuda/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Factores Socioeconómicos , Encuestas y Cuestionarios
8.
J Healthc Eng ; 2019: 8563528, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792832

RESUMEN

A well-design facility layout planning refers to the reduction of the operation cost in the manufacturing and service industry. This work consists of reliability analysis of facility layout for an operating theatre; it aims at proposing a new evaluation approach, which integrated the fuzzy analytic hierarchy process and human reliability tool, for optimization of facility layout design with safety and human factors in an operating theatre. Firstly, the systematic layout planning is used to design the layout schemes on the basis of field investigations. Then, the criteria system is proposed based on human reliability analysis from four perspectives: software, hardware, environment, and liveware. Finally, the fuzzy analytic hierarchy process, a fuzzy extension of the multicriteria decision-making technique analytic hierarchy process, is used to compare these layout schemes based on the criteria system. The results that are obtained reveal interesting properties of facility layout planning in hospitals. It reveals that decision in selecting a suitable layout must meet not only the strategies and goals of the system but also meet the safety, security, and reliability of the system.


Asunto(s)
Ergonomía/métodos , Arquitectura y Construcción de Instituciones de Salud/métodos , Lógica Difusa , Quirófanos , Toma de Decisiones , Humanos , Reproducibilidad de los Resultados
9.
Disabil Rehabil Assist Technol ; 13(4): 333-341, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28453365

RESUMEN

PURPOSE: The home-based rehabilitation of elderly patients improves their autonomy, independence and reintegration into society. Hence, a suitable environment plays an important role in rehabilitation, as do different assistance technologies. The majority of accidents at home involving elderly people occur in the bathroom. Therefore, the planning of the layout of facilities is important in this potentially dangerous area. This paper proposes an approach towards designing and optimizing the layout of facilities in the bathroom, based on logistical and nonlogistical relationships. METHODOLOGY: A fuzzy-based analytical hierarchical process (fuzzy-AHP) is then proposed for a comprehensive evaluation of the alternatives for this layout plan. This approach was applied to the home of a 71 years old female patient, who was experiencing home-based rehabilitation. After the initial designing and optimizing of the layout of the facilities in her bathroom, a plan could then be created for her particular needs. FINDINGS: The results of this research could then enable the home-based rehabilitation of elderly patients to be more effective. Value: This paper develops a new approach to design and optimize the layout of facilities in bathroom for the elderly. Implications for Rehabilitation Develop a new approach to design and optimize the layout of facilities in bathroom. Provide a mathematical and more scientific approach to home layout design for home-based rehabilitation. Provide new opportunities for research, for both the therapist and the patient to analyse the home facility layout.


Asunto(s)
Accesibilidad Arquitectónica/métodos , Lógica Difusa , Servicios de Atención de Salud a Domicilio/organización & administración , Cuartos de Baño , Anciano , Femenino , Humanos
10.
IEEE Trans Cybern ; 43(3): 1059-72, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23757441

RESUMEN

The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.


Asunto(s)
Algoritmos , Inteligencia Artificial , Técnicas de Apoyo para la Decisión , Lógica Difusa , Reconocimiento de Normas Patrones Automatizadas/métodos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA