Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Chem Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39025070

RESUMEN

Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.

3.
Front Pharmacol ; 15: 1419044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895635

RESUMEN

Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.

4.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608839

RESUMEN

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Asunto(s)
Arabidopsis , Cromatografía de Afinidad , Fosfoproteínas , Proteómica , Flujo de Trabajo , Proteómica/métodos , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análisis , Cromatografía de Afinidad/métodos , Proteínas de Arabidopsis/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Fosforilación , Fosfopéptidos/metabolismo , Fosfopéptidos/análisis , Espectrometría de Masas en Tándem , Proteínas de Plantas/metabolismo
5.
Molecules ; 29(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257222

RESUMEN

Reactions of N,N'-bis(3-methylpyridyl)oxalamide (L1), N,N'-bis(3-methylpyridyl)adipoamide (L2) and N,N'-bis(3-methylpyridyl)sebacoamide (L3) with tricarboxylic acids and Cu(II) salts afforded {[Cu(L1)(1,3,5-HBTC)]·H2O}n (1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid), 1, {[Cu1.5(L2)1.5(1,3,5-BTC)(H2O)2]·6.5H2O}n, 2, [Cu(L2)0.5(1,3,5-HBTB)]n (1,3,5-H3BTB = 1,3,5-tri(4-carboxyphenyl)benzene), 3, [Cu4(L3)(OH)2(1,3,5-BTC)2]n, 4, {[Cu3(L3)2(1,3,5-BTB)2]·2.5MeOH·2H2O}n, 5, and {[Cu3(L3)2(1,3,5-BTB)2 ]·DMF·2H2O}n, 6, which have been structurally characterized by using single crystal X-ray crystallography. Complexes 1-4 form a 2D layer with the {44.62}-sql topology, a 2D layer with the (4.62)2(42.62.82)-bex topology, a three-fold interpenetrated 3D net with the (412·63)-pcu topology and a 3D framework with the (410·632·83)(42·6)2(43·63) topology, respectively, whereas 5 and 6 are 3D frameworks with the (63)2(64·82)(68·85·102) topology. Complex 5 shows a better iodine adsorption factor of 290.0 mg g-1 at 60 °C for 360 min than the other ones, revealing that the flexibility of the spacer ligand governs the structural diversity and the adsorption capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA