Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Biomed Sci ; 30(1): 35, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259079

RESUMEN

BACKGROUND: Cancer-specific adoptive T cell therapy has achieved successful milestones in multiple clinical treatments. However, the commercial production of cancer-specific T cells is often hampered by laborious cell culture procedures, the concern of retrovirus-based gene transfection, or insufficient T cell purity. METHODS: In this study, we developed a non-genetic engineering technology for rapidly manufacturing a large amount of cancer-specific T cells by utilizing a unique anti-cancer/anti-CD3 bispecific antibody (BsAb) to directly culture human peripheral blood mononuclear cells (PBMCs). The anti-CD3 moiety of the BsAb bound to the T cell surface and stimulated the differentiation and proliferation of T cells in PBMCs. The anti-cancer moiety of the BsAb provided these BsAb-armed T cells with the cancer-targeting ability, which transformed the naïve T cells into cancer-specific BsAb-armed T cells. RESULTS: With this technology, a large amount of cancer-specific BsAb-armed T cells can be rapidly generated with a purity of over 90% in 7 days. These BsAb-armed T cells efficiently accumulated at the tumor site both in vitro and in vivo. Cytotoxins (perforin and granzyme) and cytokines (TNF-α and IFN-γ) were dramatically released from the BsAb-armed T cells after engaging cancer cells, resulting in a remarkable anti-cancer efficacy. Notably, the BsAb-armed T cells did not cause obvious cytokine release syndrome or tissue toxicity in SCID mice bearing human tumors. CONCLUSIONS: Collectively, the BsAb-armed T cell technology represents a simple, time-saving, and highly safe method to generate highly pure cancer-specific effector T cells, thereby providing an affordable T cell immunotherapy to patients.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neoplasias , Ratones , Animales , Humanos , Linfocitos T , Leucocitos Mononucleares , Ratones SCID , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/uso terapéutico , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Antineoplásicos/metabolismo
2.
Pharmaceutics ; 15(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36839795

RESUMEN

In recent years, combining different types of therapy has emerged as an advanced strategy for cancer treatment. In these combination therapies, oral delivery of anticancer drugs is more convenient and compliant. This study developed an irinotecan/rapamycin-loaded oral lecithin-based self-nanoemulsifying nanoemulsion preconcentrate (LBSNENPir/ra) and evaluated its synergistic combination effects on pancreatic cancer. LBSNENP loaded with irinotecan and rapamycin at a ratio of 1:1 (LBSNENPir10/ra10) had a better drug release profile and smaller particle size (<200 nm) than the drug powder. Moreover, LBSNENPir10/ra10 exhibited a strong synergistic effect (combination index [CI] < 1.0) in cell viability and combination effect studies. In the tumor inhibition study, the antitumor activity of LBSNENPir10/ra10/sily20 against MIA PaCa-2 (a human pancreatic cancer cell line) was significantly increased compared with the other groups. When administered with rapamycin and silymarin, the area under the curve and the maximum concentration of irinotecan significantly improved compared with the control. We successfully developed an irinotecan/rapamycin-loaded oral self-nanoemulsifying nanoemulsion system to achieve treatment efficacy for pancreatic cancer.

3.
Drug Deliv ; 30(1): 2158964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36587631

RESUMEN

The purpose of this study was to develop poloxamer (P407)-based in-situ thermogellable hydrogels with reducing concentration of P407 by adding hypromellose (HPMC) and with enhancing mucoadhesion of resulting hydrogels by adding hyaluronic acid (HA) for prolonging ocular delivery of hydroxypropyl-ß-cyclodextrin (HPßCD)-solubilized testosterone (TES). Results demonstrated that 0.5% TES solution was successfully solubilized with adding 10% HPßCD. Non-gellable 13% P407 sol became in-situ gellable with adding 2.0-2.5% HPMC and mucoadhesibility was further imporved with adding 0.3% HA-L (low MW) or HA-H (high MW). Optimized 0.5% HPßCD-solubilized TES P407-based thermogellable hydrogels with enhancement of mucoadhesion for prolonging ocular delivery comprised 13% P407, 2.5% HPMC, and 0.3% HA-L or HA-H. Furthermore, rheological measurements under simulated eye blinking confirmed that non-thixotropic properties of optimized hydrogels could be spreaded evenly and retain a greater amount of drug-loaded hydrogels on the ocular surface for a longer period to prolong drug delivery. Compared with conventional eye drops, the prolonged residence time of optimized hydrogels from ex vivo and in vivo studies were observed, indicating relationships between rheological properties and in vivo performances. It was concluded that P407-based thermosensitive hydrogels with reducing concentration of P407 and enhancing mucoadhesion was successfully formulated by adding 2.5% HPMC and 0.3% HA in 13% P407 for potentially accomplishing effective clinical treatment of DED.


Asunto(s)
Ácido Hialurónico , Poloxámero , Derivados de la Hipromelosa , 2-Hidroxipropil-beta-Ciclodextrina , Temperatura , Hidrogeles
4.
Int J Nanomedicine ; 17: 5353-5374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419719

RESUMEN

Introduction: Approximately 15%~30% of breast cancers have gene amplification or overexpression of the human epidermal growth factor receptor 2 (HER2), resulting in the chemotherapy resistance, a more-aggressive phenotype and poor prognosis. Methods: We propose a strategy of nanocarriers co-loaded with docetaxel (DTX) and pictilisib (PIC) at a synergistic ratio and non-covalently bound with dual anti-HER2 epitopes bispecific antibodies (BsAbs: anti-HER2-IV/methoxy-polyethylene glycol (mPEG) and anti-HER2-II/methoxy-PEG) for synergistic targeting to overcome the therapeutic dilemmas of the resistance for HER2-targetable chemodrugs. DTX/PIC-loaded nanocarriers (D/P_NCs) were prepared with single emulsion methods and characterized using dynamic light scattering analysis, and the drug content was assayed by high-performance liquid chromatographic method. The integrity and function of BsABs were evaluated using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). The in vitro cell studies and in vivo breast tumor-bearing mice model were used to evaluate the anti-cancer effect and biosafety of formulations. Results: D/P_NCs optimally prepared exhibited a spherical morphology with small particle sizes (~140 nm), high drug loading (~5.5%), and good colloidal stability. The synergistic tumor cytotoxicity of loading DTX and PIC at 2:1 ratio in D/P_NCs was discovered. The BsAbs are successfully decorated on mPEGylated DTX/PIC-loaded nanocarriers via anti-mPEG moiety. In vitro studies revealed that non-covalent decoration with dual BsAbs on D_P-NCs significantly and synergistically increased cellular uptake, while with loading DTX and PIC at a synergistic ratio of 2:1 in D/P_NCs further resulted in synergistic cytotoxicity. In vivo tumor inhibition studies showed the comparable results for synergistic antitumor efficacy while minimizing systemic toxicity of chemodrugs. Conclusion: Non-covalent modification with dual distinct epitopes BsAbs on the nanocarriers loaded with dual chemodrugs at a synergistic ratio was expected to be a promising therapeutic platform to overcome the chemoresistance of various cancers and warrants further development for future therapy in the clinical.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Docetaxel , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Taxoides/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Epítopos
5.
J Control Release ; 351: 970-988, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36220488

RESUMEN

Cancer vaccines have recently garnered tremendous interest. However, the targeted delivery of antigens and adjuvants to dendritic cells (DCs) still remains challenging. In this study, we developed glycosylated poly(lactic-co-glycolic acid) nanoparticles (NPs) loaded with the SIINFEKL peptide (OVA) as a tumor-specific antigen and CpG oligodeoxynucleotide (CpG) as an adjuvant for an effective DC-targeted cancer vaccine. Surface modification of NPs with galactose (Gal) or mannose (Man) was carried out by a double-emulsion solvent evaporation method, and the products were respectively named OVA-CpG Gal-NPs and OVA-CpG Man-NPs. They exhibited a uniform particle size, high loading capacity, robust stability, and extended release. The OVA-CpG Gal-NPs were found to rapidly enhance antigen uptake and DC maturation. In the in vivo study, OVA-CpG Gal-NPs via intravenous (i.v.), intranasal (i.n.) and subcutaneous (s.c.) routes had rapidly accumulated in the spleen. Moreover, the non-glycosylated OVA-CpG NPs after s.c. immunization could rapidly be trafficked to distal lymph nodes and sustained higher levels. All of these formulations increased the level of cluster of differentiation 4-positive (CD4+) T cells and interferon (IFN)-γ in the spleen, then promoted the cytotoxic CD8+ tumor-infiltrating lymphocytes against E.G7-OVA lymphomas. In conclusion, galactosylated NPs provided an effective platform to enhance the DC targeting to induce cellular immunity and T-cell recruitment into tumor sites in vivo, thus showing great potential to be developed as a prophylactic vaccine for cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Animales , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicosilación , Ovalbúmina , Adyuvantes Inmunológicos , Antígenos de Neoplasias/metabolismo , Vacunación , Neoplasias/prevención & control , Células Dendríticas , Ratones Endogámicos C57BL
6.
Pharmaceutics ; 14(6)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35745775

RESUMEN

Pancreatic cancer is one of the most common causes of death in Taiwan. Previous studies have shown that more than 90% of pancreatic cancer cells presented epidermal growth factor receptor (EGFR) cell marker, and this marker is thought to be important as it is related to activation of cancer cell proliferation, angiogenesis, and cancer progression. Moreover, tumor-associated fibroblasts were involved in tumor proliferation and progression. In this study, we fabricated an anti-EGFR and anti-fibroblast activation protein bispecific antibody-targeted liposomal irinotecan (BS-LipoIRI), which could specifically bind to pancreatic cancer cells and tumor-associated fibroblasts. The drug encapsulation efficiency of BS-LipoIRI was 80.95%, and the drug loading was 8.41%. We proved that both pancreatic cancer cells and fibroblasts could be targeted by BS-LipoIRI, which showed better cellular uptake efficacy compared to LipoIRI. Furthermore, an in vivo mouse tumor test indicated that BS-LipoIRI could inhibit pancreatic cancer growth up to 46.2% compared to phosphate-buffered saline control, suggesting that BS-LipoIRI could be useful in clinical cancer treatment.

7.
J Control Release ; 344: 235-248, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288168

RESUMEN

Immunotherapy is blooming in recent years. However, this therapy needs to overcome off-target effects, cytokine release syndrome, and low responses in the 'cold' tumor environment. Herein, various combinations of immunotherapies and chemotherapies were proposed to transform 'cold' tumors into 'hot' tumors to enhance the efficacy of immunotherapies. In this study, we prepared a biocompatible ganetespib (GSP)-loaded PEGylated nanocarriers (NCs) with a thin-film method, which exhibited a small particle size (~220.6 nm), high drug loading (~5.8%), and good stability. We designed and produced the cluster of differentiation 3 (CD3)/programmed death ligand 1 (PD-L1)/methoxy-polyethylene glycol (mPEG) trispecific antibodies (TsAbs) as bispecific T-cell engagers (BiTEs) to non-covalently bind the GSP-NCs via anti-mPEG fragment and endowed the GSP-NCs with a targeting ability and immunotherapeutic potential to activate cytotoxic T cells. Decoration of the GSP-NCs with TsAbs (BiTEs-GSP-NCs) significantly promoted the cellular uptake and showed synergistic effects through respective anti-PD-L1 and anti-CD3 activation of T cell-mediated cytotoxicity. In vivo tumor-inhibition studies also showed that the BiTEs-GSP-NCs could inhibit tumor growth with the GSP chemodrug and increase T-cell infiltration. This study provides a promising drug delivery strategy for cancer immunochemotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Anticuerpos Biespecíficos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas , Polietilenglicoles
8.
ACS Omega ; 7(4): 3254-3261, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128237

RESUMEN

In this study, superabsorbent polyelectrolyte hydrogels were synthesized by cross-linking a nondegradable poly (allylamine hydrochloride) (PAH) and a recombinant protein with a specific enzymatic cleavage site. The recombinant protein was produced by E. coli with the pET-32b(+) plasmid, which is featured with the thioredoxin (Trx) gene containing a thrombin recognition site and a T7/lac hybrid promoter for high expression of recombinant protein. The swelling test shows that the composite hydrogel still maintained a high swelling ratio to 900% when 15% recombinant protein was cross-linked with PAH. The degradation test shows that such a PAH composite hydrogel could be decomposed by the addition of specific enzyme thrombin, which might lead to new biomedical applications of hydrogels needed to be decomposable by specific time not determined by the time period.

9.
Biomater Sci ; 10(1): 202-215, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34826322

RESUMEN

The therapeutic efficacy of methoxypolyethylene glycol (mPEG)-coated nanomedicines in solid tumor treatment is hindered by tumor-associated fibroblasts (TAFs), which promote tumor progression and form physical barriers. We developed an anti-HER2/anti-FAP/anti-mPEG tri-specific antibody (TsAb) for one-step conversion of mPEG-coated liposomal doxorubicin (Lipo-Dox) to immunoliposomes, which simultaneously target HER2+ breast cancer cells and FAP+ TAFs. The non-covalent modification did not adversely alter the physical characteristics and stability of Lipo-Dox. The TsAb-Lipo-Dox exhibited specific targeting and enhanced cytotoxicity against mono- and co-cultured HER2+ breast cancer cells and FAP+ TAFs, compared to bi-specific antibody (BsAb) modified or unmodified Lipo-Dox. An in vivo model of human breast tumor containing TAFs also revealed the improved tumor accumulation and therapeutic efficacy of TsAb-modified mPEGylated liposomes without signs of toxicity. Our data indicate that arming clinical mPEGylated nanomedicines with the TsAb is a feasible and applicable approach for overcoming the difficulties caused by TAFs in solid tumor treatment.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina , Femenino , Humanos , Liposomas , Nanomedicina , Polietilenglicoles
10.
Drug Deliv ; 28(1): 2205-2217, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34662257

RESUMEN

Therapeutic efficacies of orally administrated hydrophobic chemodrugs are decreased by poor water solubilities and reduced oral bioavailabilities by P-glycoprotein (P-gp) and CYP450. In this study, CPT11 alone or combined with dual-function inhibitors (baicalein (BA) silymarin (SM), glycyrrhizic acid (GA), and glycyrrhetinic acid (GLA)) of P-gp and CYP450 loaded in a lecithin-based self-nanoemulsifying nanoemulsion preconcentrate (LBSNENP) to improve the solubility and inhibit the elimination by P-gp and CYP450. Results revealed that the LBSNENP composed of Capryol 90, lecithin/Tween 80/Cremophor EL, and propylene glycol at a weight ratio of 18:58:24 (designated PC90C10P0) was optimally selected. Encapsulating CPT11 with PEO-7000K in PC90C10P10/30 further enhanced the resultant hydrogel to be gastro-retainable and to release CPT11 in a sustained manner. Pharmacokinetic study of CPT11-loaded PC90C10P0 administered orally revealed an absolute bioavailability (FAB, vs. intravenous CPT11) of 7.8 ± 1.01% and a relative bioavailability (FRB1, vs. oral solution of CPT11) of 70.7 ± 8.6% with a longer half-life (T1/2) and mean residence time (MRT). Among the dual-function inhibitors, SM was shown to be the most influential in increasing the oral bioavailability of CPT11. SM also increased the plasma concentration of the SN-38 active metabolite, which formed from the enhanced plasma concentration of CPT11. It is concluded that treatment with CPT11 loaded in PC90C10P0 with or without solubilization with SM could expose tumors to higher plasma concentrations of both CPT11 and SN-38 leading to enhancement of tumor growth inhibition with no signs of adverse effects.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Irinotecán/farmacología , Nanopartículas/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Emulsiones/química , Flavanonas/farmacología , Ácido Glicirretínico/farmacología , Ácido Glicirrínico/farmacología , Semivida , Irinotecán/administración & dosificación , Irinotecán/farmacocinética , Ratones , Neoplasias Pancreáticas , Conejos , Distribución Aleatoria , Silimarina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Front Oncol ; 11: 592045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616668

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNA) mediates the pathogenesis of various diseases, including cancer and cardiovascular, infectious, and metabolic diseases. This study examined the role of lncRNA NTT in the development and progression of cancer. METHODS: The expression of NTT was determined using tissues containing complementary DNA (cDNA) from patients with liver, lung, kidney, oral, and colon cancers. The expression of cis-acting genes adjacent to the NTT locus (CTGF, STX7, MYB, BCLAF1, IFNGR1, TNFAIP3, and HIVEP2) was also assessed. We used knockdown and chromatin immunoprecipitation (ChIP) assays to identify the cis-acting genes that interact with NTT. RESULTS: NTT was most significantly downregulated in hepatocellular carcinoma (HCC), while a higher NTT level correlated with a shorter survival time of patients with HCC. Multivariate analysis indicated NTT was not an independent predictor for overall survival. MYB was significantly upregulated, and its increased expression was associated with dismal survival in HCC patients, similar to the results for NTT. NTT knockdown significantly decreased cellular migration. ChIP of HCC cell lines revealed that NTT is regulated by the transcription factor ATF3 and binds to the MYB promoter via the activated complex. Additionally, when NTT was knocked down, the expression of MYB target genes such as Bcl-xL, cyclinD1, and VEGF was also downregulated. NTT could play a positive or negative regulator for MYB with a context-dependent manner in both HCC tissues and animal model. CONCLUSION: Our study suggests that NTT plays a key role in HCC progression via MYB-regulated target genes and may serve as a novel therapeutic target.

12.
Int J Nanomedicine ; 16: 6825-6841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675510

RESUMEN

PURPOSE: Therapeutic efficacy of pancreatic adenocarcinomas (PACs) with combined therapy of carfilzomib (CFZ) and paclitaxel (PTX) co-loaded in human serum albumin (HSA) nanoparticles (NPs) was examined. METHODS: CFZ and PTX were encapsulated individually or combined into HSA NPs by a simple reverse self-assembly method developed to achieve an optimal combination ratio for synergistic therapy. CFZ or/and PTX loaded HSA nanoparticles were physically characterized and the evaluation of combination index, drug release, pharmacokinetic, anti-tumor, and biodistribution studies were conducted. RESULTS: All resultant drug-loaded HSA NPs were spherical with a particle size of <150 nm and a zeta potential of -21.1~-23.0 mV. Drug loading rates and entrapment efficiencies were 9.1%~10.1% and 90.7%~97.1%, respectively. CFZ and PTX demonstrated synergistic effects in an MIA PaCa-2 cytotoxicity at a 1:2 ratio (CI50 were 0.01~0.25). In vitro dissolution revealed that the CFZ/PTX ratio released from the co-loaded HSA NPs (CFZ/PTX/HSA NPs) was about 1.77~2.08, which conformed to the designated loaded ratio. In vivo evaluation showed that the combined therapy of CFZ and PTX at a 1:2 ratio co-loaded in HSA NPs (CFZ/PTX/HSA NPs) demonstrated optimal synergistic improvement of the growth inhibition of MIA PaCa-2 cells with less systematic toxicity, even though the pharmacokinetic profiles observed did not show obvious beneficial and their biodistributions in tumors were found to be smaller. CONCLUSION: The one-pot reverse assembly method developed was environmentally friendly and capable of co-loading an optimal combination ratio of two chemodrugs into HSA NPs for synergistic therapy.


Asunto(s)
Adenocarcinoma , Nanopartículas , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Oligopéptidos , Paclitaxel , Neoplasias Pancreáticas/tratamiento farmacológico , Distribución Tisular
13.
Biomaterials ; 278: 121166, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634663

RESUMEN

In this study, PEGylated poly (lactide-co-glycolide) (PLGA) thermosensitive composite hydrogels (DTgels) loaded with bispecific anti-cluster of differentiation 3 (CD3) scFv T-cell/anti-epidermal growth factor receptor (EGFR) Fab engager (BiTEE) were subcutaneously (s.c.) injected for the in situ formation of a drug deposit to resolve limitations of the clinical application of the BiTEE of a short half-life and potential side effects. Three kinds of DTgels prepared with different ratios of methoxy poly (ethylene glycol) (mPEG)-PLGA (diblock copolymer, DP) and PLGA-PEG-PLGA (triblock copolymer, TP) were designated DTgel-1, DTgel-2, and DTgel-2S. All three DTgel formulations showed thermosensitive properties with a sol-gel transition temperature at 28-34 °C, which is suitable for an injection. An in vitro release study showed that all DTgel formulations loaded with stabilized BiTEE extended the release of the BiTEE for up to 7 days. In an animal pharmacokinetics study, an s.c. injection of BiTEE/DTgel-1, BiTEE/DTgel-2, or BiTEE/DTgel-2S respectively prolonged the half-life of the BiTEE by 3.5-, 2.0-, and 2.2-fold compared to an intravenous injection of the BiTEE solution. Simultaneously, BiTEE/DTgel formulations showed almost no proinflammatory cytokine release in mice injected with T cells after s.c. administration. Results of an animal antitumor (MDA-MB-231) study indicated that an s.c. injection of the BiTEE/DTgel formulations significantly improved the antitumor efficacy compared to an intravenous (i.v.) or s.c. injection of the BiTEE solution. Moreover, BiTEE/DTgel formulations led to enhanced T-cell recruitment to solid-tumor sites. In conclusion, the in situ formation of injectable PEGylated PLGA thermosensitive hydrogels loaded with the BiTEE was successfully carried out to increase its half-life, maintain a constant blood level within therapeutic windows, and enhance T-cell recruitment to solid-tumor sites resulting in exceptional treatment efficacy.


Asunto(s)
Portadores de Fármacos , Polietilenglicoles , Animales , Diferenciación Celular , Hidrogeles , Ratones , Poliésteres , Temperatura
14.
Biomedicines ; 9(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440270

RESUMEN

Agricultural waste from the hulls of water caltrop (Trapa taiwanesis Nakai, TT-hull) was extracted by either steeping them in cold 95% ethanol (C95E), refluxing 95E, refluxing 50E, or refluxing hot water (HW) to obtain C95EE, 95EE, 50EE, and HWE, respectively. These four extracts showed acetylcholinesterase (AChE) inhibitory activities and free radical scavenging activities, as well as anti-non-enzymatic protein glycation in vitro. Eight compounds were isolated from TT-hull-50EE and were used to plot the chromatographic fingerprints of the TT-hull extracts, among which tellimagrandin-I, tellimagrandin-II, and 1,2,3,6-tetra-galloylglucose showed the strongest AChE inhibitory activities, and they also exhibited anti-amyloid ß peptide aggregations. The scopolamine-induced amnesiac ICR mice that were fed with TT-hull-50EE or TT-hull-HWE (100 and 200 mg/kg) or tellimagrandin-II (100 and 200 mg/kg) showed improved learning behavior when evaluated using passive avoidance or water maze evaluation, and they showed significant differences (p < 0.05) compared to those in the control group. The enriched hydrolysable tannins of the recycled TT-hull may be developed as functional foods for the treatment of degenerative disorders.

15.
Int J Nanomedicine ; 16: 4017-4030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140769

RESUMEN

PURPOSE: This study was aimed at developing the trispecific antibodies (anti-EGFR/anti-FAP/anti-mPEG, TsAb) or dual bispecific antibodies (anti-EGFR/anti-mPEG and anti-FAP/anti-mPEG) docetaxel (DTX)-loaded mPEGylated lecithin-stabilized micelles (mPEG-lsbPMs) for improving the targeting efficiency and therapeutic efficacy. METHODS: mPEG-lsbPMs were simply prepared via thin film method. The trispecific antibodies or bispecific antibodies bound the mPEG-lsbPMs by anti-mPEG Fab fragment. The formulations were characterized by DLS and TEM; in vitro and in vivo studies were also conducted to evaluate the cellular uptake, cell cytotoxicity and therapeutic efficacy. RESULTS: The particle sizes of mPEG-lsbPMs with or without the antibodies were around 100 nm; the formulations showed high encapsulation efficiencies of 97.12%. The TsAb and dual bispecific antibodies were fabricated and demonstrated their targeting ability. Two EGFR-overexpressed cell lines (HT-29 and MIA PaCa-2) were co-cultured with FAP-overexpressed WS1 cells (HT-29/WS1; MIA PaCa-2/WS1) to mimic a tumor coexisting in the tumor microenvironment. Cellular binding study revealed that the binding of anti-FAP micelles to three co-culture ratios (4:1, 1:1, and 1:4) of HT-29/EGFR to WS1/FAP was significantly higher than that for TsAb micelles and dual (1:1) micelles, and the binding of those targeting antibodies to WS1/FAP and MIA PaCa-2/EGFR was equally efficacious resulting in a similar binding amount of the TsAb and dual BsAbs (1:1) with the co-culture of MIA PaCa-2/EGFR and WS1/FAP at a 1:1 ratio. Antitumor efficacy study showed that treatment with DTX-loaded mPEG-lsbPMs modified with or without BsAbs, dual BsAbs (1:1), and TsAbs was enhanced in inhibiting tumor growth compared with that for Tynen® while showing fewer signs of adverse effects. CONCLUSION: Active targeting of both tumors and TAF-specific antigens was able to increase the affinity of DTX-loaded mPEG-lsbPMs toward tumor cells and TAFs leading to successive uptake by tumor cells or TAFs which enhanced their chemotherapeutic efficacy against antigen-positive cancer cells.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/farmacología , Docetaxel/administración & dosificación , Portadores de Fármacos/química , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/química , Antineoplásicos Inmunológicos/farmacocinética , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cocultivo , Docetaxel/farmacocinética , Portadores de Fármacos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Humanos , Inyecciones Intradérmicas , Lecitinas/química , Masculino , Ratones Desnudos , Micelas , Tamaño de la Partícula , Polietilenglicoles/química , Ratas Sprague-Dawley , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Carbohydr Polym ; 268: 118239, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34127221

RESUMEN

Composite dressing composed of Rhizochitosan and Regenplex™ to promote wound healing were assessed. Rhizochitosan was fabricated by deacetylation of Rhizochitin, which obtained by simply depigmenting sporangium-free mycelial mattress produced from Rhizopus stolonifer F6. Physicochemical characterizations of Rhizochitosan demonstrated that it contained 13.5% chitosan with a water-absorption ability of 35-fold dry weight and exhibiting hydrogel nature after hydration. In a wound-healing study on SD rats with full-thickness injury, the composite dressing had a better healing effect than those for each individual components and control group and wound even healed as functional tissue instead of scar tissue. The underlying mechanism of the composite beneficial to wound remodeling is likely attributable to a more reduction level of matrix metalloproteinase (MMP)-9 expression in early stage and a higher MMP-2 expression level in a later stage of healing process. Conclusively, the composite dressing demonstrated to be highly beneficial to the healing of full-thickness injury wound.


Asunto(s)
Plaquetas/efectos de los fármacos , Quitosano/uso terapéutico , Polisacáridos Fúngicos/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Vendajes , Bovinos , Quitosano/química , Quitosano/aislamiento & purificación , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/aislamiento & purificación , Masculino , Ratas Sprague-Dawley , Rhizopus/química , Piel/efectos de los fármacos , Piel/lesiones
17.
Int J Nanomedicine ; 16: 651-665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33536753

RESUMEN

OBJECTIVE: This study was intended to utilize lecithin-based mixed polymeric micelles (lbMPMs) for enhancing the solubility and bioavailability of honokiol and magnolol to resolve the hindrance of their extreme hydrophobicity on the clinical applications. METHODS: Lecithin was selected to increase the volume of the core of lbMPMs, thereby providing a greater solubilization capacity. A series of amphiphilic polymers (sodium deoxycholate [NaDOC], Cremophor®, and Pluronic® series) were included with lecithin for screening and optimization. RESULTS: After preliminary evaluation and subsequentially optimization, two lbMPMs formulations composed of honokiol/magnolol:lecithin:NaDOC (lbMPMs[NaDOC]) and honokiol/magnolol:lecithin:PP123 (lbMPMs[PP123]) in respective ratios of 6:2:5 and 1:1:10 were optimally obtained with the mean particle sizes of 80-150 nm, encapsulation efficacy (EEs) of >90%, and drug loading (DL) of >9.0%. These lbMPMs efficiently stabilized honokiol/magnolol in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C. PK study demonstrated that lbMPMs[NaDOC] showed much improvement in enhancing bioavailability than that by lbMPMs[PP123] for both honokiol and magnolol. The absolute bioavailability for honokiol and magnolol after intravenous administration of lbMPMs[NaDOC] exhibited 0.93- and 3.4-fold increases, respectively, compared to that of free honokiol and magnolol. For oral administration with lbMPMs[NaDOC], the absolute bioavailability of honokiol was 4.8%, and the absolute and relative bioavailability of magnolol were 20.1% and 2.9-fold increase, respectively. CONCLUSION: Overall, honokiol/magnolol loaded in lbMPMs[NaDOC] showed an improvement of solubility with suitable physical characteristics leading to enhance honokiol and magnolol bioavailability and facilitating their wider application as therapeutic agents for treating human disorders.


Asunto(s)
Compuestos de Bifenilo/farmacología , Lecitinas/química , Lignanos/farmacología , Micelas , Polímeros/química , Administración Oral , Animales , Disponibilidad Biológica , Compuestos de Bifenilo/sangre , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacocinética , Liberación de Fármacos , Humanos , Lignanos/sangre , Lignanos/química , Lignanos/farmacocinética , Masculino , Tamaño de la Partícula , Ratas Sprague-Dawley , Solubilidad
19.
Bot Stud ; 61(1): 26, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32970215

RESUMEN

BACKGROUND: The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. RESULTS: The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. CONCLUSION: The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.

20.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570749

RESUMEN

Some antihistamines have exhibited significant antitumor activity alone or in combination with other therapies in in vitro and clinical studies. However, the underlying mechanisms of how antihistamines inhibit hepatocellular carcinoma proliferation are still unknown. We first screened the antiproliferation activity of 12 benzocycloheptene structural-analogue drugs, and results showed that deptropine was the most potent inhibitor of both Hep3B and HepG2 human hepatoma cells. Deptropine significantly increased light chain 3B-II (LC3B-II) expression but did not induce sequestosome 1 (SQSTM1/p62) degradation in either cell line. Interestingly, other autophagy-related proteins, such as autophagy-related 7 (ATG7), vacuolar protein sorting 34 (VPS34), phosphorylated adenosine 5'-monophosphate-activated protein kinase (AMPK), and phosphorylated protein kinase B (PKB, also known as Akt), exhibited no significant change in either deptropine-treated cell line. Deptropine also inhibited the processing of cathepsin L from its precursor form to its mature form. Immunofluorescence microscopy showed an increase of autophagosomes in deptropine-treated cells, but deptropine blocked the fusion between autophagosomes and lysosomes. In a xenograft nude mice model, 2.5 mg/kg deptropine showed a great inhibitory effect on Hep3B tumor growth. These results suggest that deptropine can induce in vitro and in vivo hepatoma cell death, and the underlying mechanisms might be mediated through inhibiting autophagy by blocking autophagosome-lysosome fusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...