Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Anal Chem ; 96(35): 14291-14297, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39172597

RESUMEN

The mitochondria, as one of the essential organelles in cells, are closely associated with numerous biological processes. Therefore, the realization of clear and real-time imaging for tracking mitochondria is of profound significance. Here, we present a mitochondria-targeting fluorescent probe, N(CH2)3-PD-NEt, for the real-time fluorescence imaging of mitochondria in living cells. Using the probe, the fluorescence changes of mitochondria stimulated by different drugs were successfully observed by fluorescence imaging. In addition, the dynamic processes of mitochondria and lysosomes during apoptosis were also explored. Importantly, we observed several novel dynamic interaction patterns between mitochondria and lysosomes. Among them, the most prominent pattern involved the noncontact movements of two lysosomes, that is, one lysosome gradually approached the other lysosome over time, eventually coming into contact and merging with it while gradually combining with mitochondria to form new mitochondria. Notably, the protrusions of the mitochondria became increasingly evident during this process. Meanwhile, we successfully observed the dynamic changes of mitochondria with SIM super-resolution imaging. The study provides promising help for the in-depth study of the dynamic processes of mitochondrial physiology and pathology and the study of the interactions between organelles.


Asunto(s)
Apoptosis , Colorantes Fluorescentes , Lisosomas , Mitocondrias , Lisosomas/metabolismo , Lisosomas/química , Mitocondrias/metabolismo , Colorantes Fluorescentes/química , Humanos , Imagen Óptica , Células HeLa
2.
Anal Chem ; 96(35): 14257-14264, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39174320

RESUMEN

The pursuit of advanced mRNA detection methods has been driven by the need for sensitive, accurate approaches that are particularly suited for live-cell analysis. Herein, we proposed a cascaded and localized assembly (CLA) system, integrating branched catalytic hairpin assembly (bCHA) with a localized hybridization chain reaction (LHCR) for enhanced mRNA imaging. The CLA system employed a dual-nanosphere (NS) platform, NSABC and NS12, and the interaction between the target and NSABC initiated the bCHA process and activated a split trigger. The newly generated trigger served as the initiator for the LHCR on NS12, leading to amplified fluorescent signals. Notably, this work introduced the first integration of a splitting strategy in a bCHA-HCR cascaded system, reducing false-positive signals and enhancing specific detection. The dual-NS platform further minimized background noise and improved the reaction kinetics through spatial confinement. As a result, the system achieved a detection limit of 1.23 pM. With these advantages, the CLA system demonstrated successful application in both living cells and clinical tissues, underscoring its potential in biomolecular research and clinical diagnostics.


Asunto(s)
ADN , Nanosferas , ARN Mensajero , Nanosferas/química , ARN Mensajero/análisis , Humanos , ADN/química , Hibridación de Ácido Nucleico , Imagen Óptica , Límite de Detección
3.
Angew Chem Int Ed Engl ; : e202407308, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995157

RESUMEN

The intrinsic correlation between depression and serotonin (5-HT) is a highly debated topic, with significant implications for the diagnosis, treatment, and advancement of drugs targeting neurological disorders. To address this important question, it is of utmost priority to understand the action mechanism of serotonin in depression through fluorescence imaging studies. However, the development of efficient molecular probes for serotonin is hindered by the lack of responsive sites with high selectivity for serotonin at the present time. Herein, we developed the first highly selective serotonin responsive site, 3-mercaptopropionate, utilizing thiol-ene click cascade nucleophilic reactions. The novel responsive site was then employed to construct the powerful molecular probe SJ-5-HT for imaging the serotonin level changes in the depression cells and brain tissues. Importantly, the imaging studies reveal that the level of serotonin in patients with depression may not be the primary factor, while the ability of neurons in patients with depression to release serotonin appears to be more critical. Additionally, this serotonin release capability correlates strongly with the levels of mTOR (intracellular mammalian target of rapamycin). These discoveries could offer valuable insights into the molecular mechanisms underpinning depression and furnish mTOR as a novel direction for the advancement of antidepressant therapies.

4.
Anal Chim Acta ; 1316: 342802, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969400

RESUMEN

BACKGROUND: Cirrhosis represents the terminal stage of liver disease progression and timely intervention in a diseased liver can enhance the likelihood of recovery. Viscosity, a crucial parameter of the cellular microenvironment, is intricately linked to the advancement of cirrhosis. However, viscosity monitoring still faces significant challenges in achieving non-invasive and rapid early diagnosis of cirrhosis. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-destructive detection, and ignoring background fluorescence interference, plays an important role in diagnosing and treating various biological diseases. Hence, monitoring cellular viscosity changes with NIR fluorescence probe holds great significance in the early diagnosis of cirrhosis. RESULTS: In this study, the NIR fluorescence probe based on the intramolecular charge transfer (TICT) mechanism was developed for imaging applications in mouse model of liver cirrhosis. A molecular rotor-type viscosity-responsive probe was synthesized by linking dioxanthracene groups via carbon-carbon double bonds. The probe demonstrated remarkable sensitivity, high selectivity and photostability, with its responsiveness to viscosity largely unaffected by factors such as polarity, pH, and interfering ions. The probe could effectively detect various drug-induced changes in cellular viscosity, enabling the differentiation between normal cells and cancerous cells. Furthermore, the enhanced tissue penetration capabilities of probe facilitated its successful application in mouse model of liver cirrhosis, allowing for the assessment of liver disease severity based on fluorescence intensity and providing a powerful tool for early diagnosis of cirrhosis. SIGNIFICANCE: A NIR viscosity-sensitive fluorescent probe was specifically designed to effectively monitor alterations in cellular and organ viscosity, which could advance the understanding of the biological characteristics of cancer and provide theoretical support for the early diagnosis of cirrhosis. Overall, this probe held immense potential in monitoring viscosity-related conditions, expanding the range of biomedical tools available.


Asunto(s)
Colorantes Fluorescentes , Cirrosis Hepática , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Animales , Humanos , Ratones , Imagen Óptica , Viscosidad , Rayos Infrarrojos , Estructura Molecular
5.
Anal Chem ; 96(29): 12189-12196, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975803

RESUMEN

Aging represents a significant risk factor for compromised tissue function and the development of chronic diseases in the human body. This process is intricately linked to oxidative stress, with HClO serving as a vital reactive oxygen species (ROS) within biological systems due to its strong oxidative properties. Hence, conducting a thorough examination of HClO in the context of aging is crucial for advancing the field of aging biology. In this work, we successfully developed a fluorescent probe, OPD, tailored specifically for detecting HClO in senescent cells and in vivo. Impressively, OPD exhibited a robust reaction with HClO, showcasing outstanding selectivity, sensitivity, and photostability. Notably, OPD effectively identified HClO in senescent cells for the first time, confirming that DOX- and ROS-induced senescent cells exhibited higher HClO levels compared to uninduced normal cells. Additionally, in vivo imaging of zebrafish demonstrated that d-galactose- and ROS-stimulated senescent zebrafish displayed elevated HClO levels compared to normal zebrafish. Furthermore, when applied to mouse tissues and organs, OPD revealed increased fluorescence in the organs of senescent mice compared to their nonsenescent counterparts. Our findings also illustrated the probe's potential for detecting changes in HClO content pre- and post-aging in living mice. Overall, this probe holds immense promise as a valuable tool for in vivo detection of HClO and for studying aging biology in live organisms.


Asunto(s)
Senescencia Celular , Colorantes Fluorescentes , Especies Reactivas de Oxígeno , Pez Cebra , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Senescencia Celular/efectos de los fármacos , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Ácido Hipocloroso/análisis , Ácido Hipocloroso/metabolismo , Doxorrubicina/farmacología , Imagen Óptica , Envejecimiento
6.
Anal Chem ; 96(31): 12908-12915, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39066699

RESUMEN

To coordinate cellular physiology, cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Lipid droplets (LDs) and nuclear membrane (NM) contact sites are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites. However, there is still a lack of understanding of the specific morphology of the contact sites. Here, we combine advanced three-dimensional (3D) imaging with a high-brightness fluorescent probe specifically targeting LDs to map the structural landscape of LD-NM contact sites. The probe exhibits exceptional photophysical properties, making it highly suitable for visualizing the changes occurring in LDs during the apoptosis process. In addition, we utilize the advantages of the probe to accurately monitor the overexpression of abnormal LDs in cirrhosis by 3D imaging for the first time. The outcomes of this investigation highlight that the probe has potential as a robust imaging tool to investigate intricate biological functions of LDs and their implications in related diseases.


Asunto(s)
Colorantes Fluorescentes , Imagenología Tridimensional , Gotas Lipídicas , Membrana Nuclear , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Humanos , Colorantes Fluorescentes/química , Membrana Nuclear/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Animales , Células Hep G2
7.
Anal Chim Acta ; 1312: 342748, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834262

RESUMEN

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Ratones , Humanos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Imagen Óptica , Masculino , Estructura Molecular
8.
Talanta ; 277: 126387, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876028

RESUMEN

Breast cancer, a globally prevalent malignancy, is characterized by pronounced heterogeneity. Accurate subtyping requires the simultaneous detection of different biomarkers, which is crucial for personalized treatment strategies. However, existing methodologies are hindered by limited versatility and sensing performance. To overcome these hurdles, this study presents a universal 3D-Hybridization Chain Reaction (3D-HCR) system for RNA detection and subtype-specific diagnosis of breast cancer. The system integrated a universal trigger for HCR, thereby circumventing the need for complex sequence design and enabling the analysis of various RNA targets. Leveraging the spatial-confinement effect offered by DNA nanocarriers, this system exhibited superior amplification efficiency, achieving detection limits of 3.83 pM and 4.96 pM for PD-L1 mRNA and miR-21, respectively. Importantly, the system could differentiate between triple-negative breast cancer and estrogen receptor-positive breast cancer in both living cells and clinical tissues. These findings underscore the potential of the universal 3D-HCR system as a promising tool in clinical diagnostics. With its proven proficiency in breast cancer diagnostics and versatility in RNA analysis, this system holds the promise of broadening the horizons of precision medicine.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico , Femenino , MicroARNs/análisis , Hibridación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/análisis , Límite de Detección
9.
J Hazard Mater ; 473: 134685, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797075

RESUMEN

Inflammation is the most common disease in humans. Alcohol has been part of human culture throughout history. To avoid alcohol prompting inflammation to develop into a more serious disease, it is important for human health to explore the effects of alcohol on the development of inflammation.Endogenous sulfur dioxide (SO2) is considered an important regulator of the development of inflammation and is involved in the entire development process of inflammation. Taken together, it is of great significance to explore the impact of alcohol on the development process of inflammation through changes in SO2 concentration in the inflammatory microenvironment. Herein, we report the development of a molecular tool (Nu-SO2) with rapid (5 s) response to the important inflammatory modulator sulfur dioxide (SO2) for the diagnosis of inflammation, assessment of therapeutic effects, and evaluation of the development process of alcohol-induced inflammation. The rationality of Nu-SO2 was confirmed through molecular docking calculations, density functional theory (DFT) theoretical calculations, DNA/RNA titration experiments and co-localization experiments. Furthermore, Nu-SO2 was effectively applied for specific response and highly sensitive visualization imaging of SO2 in solution, cells and mice. Importantly, Nu-SO2 was successfully used to diagnose lipopolysaccharide-induced inflammation in cells and mice and evaluate the efficacy of dexamethasone in treating inflammation. More significantly, based on the excellent performance of Nu-SO2 in dynamically reporting the further development of inflammation in mice triggered by alcohol, we successfully elucidated the "anti-inflammatory and pro-inflammatory" trend in the development of inflammation caused by alcohol stimulation. Thus, this work not only advances the research on the relationship between alcohol, inflammation and SO2, but also provides a new non-invasive assessment method for the development mechanism of inflammation induced by external stimuli and the precise diagnosis and treatment of drug efficacy evaluation.


Asunto(s)
Etanol , Inflamación , Dióxido de Azufre , Inflamación/inducido químicamente , Animales , Ratones , Etanol/toxicidad , Etanol/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Simulación del Acoplamiento Molecular , Humanos , Células RAW 264.7 , Lipopolisacáridos/toxicidad , Masculino , Dexametasona/farmacología
10.
Mikrochim Acta ; 191(6): 333, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753167

RESUMEN

The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.


Asunto(s)
COVID-19 , Límite de Detección , ARN Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ARN Viral/análisis , ARN Viral/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , Nanosferas/química , ADN/química , Secuencias Invertidas Repetidas , Animales , Prueba de Ácido Nucleico para COVID-19/métodos , Bovinos , Reactivos de Enlaces Cruzados/química , Saliva/virología
11.
Anal Chim Acta ; 1311: 342733, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38816158

RESUMEN

BACKGROUND: Limb ischemia-reperfusion is a common phenomenon in clinical surgery, which disrupts the balanced physiological response process and ultimately leads to changes in intracellular viscosity. Intracellular viscosity is an important microenvironmental parameter that affects the normal function of organisms, and its level is closely related to many diseases. In addition, oxidative stress in the lower limbs can impair body function, and changes in pressure can lead to changes in the viscosity of limb tissues. Therefore, it is necessary to develop effective tools to detect changes in intracellular viscosity and visualize the progression of hind limb ischemia-reperfusion injury. RESULTS: In order to solve this problem, a near infrared viscometry sensitive fluorescence probe (PH-XQ) with long emission wavelength and stable luminescence performance was designed and synthesized by using oxanthracene derivatives and malononitrile. The fluorescence probe (PH-XQ) has excellent selectivity, high sensitivity, low toxicity, high biocompatibility and excellent detection performance. The fluorescence intensity of the PH-XQ probe at 667 nm is highly sensitive to the change of viscosity. With the increase of viscosity, the fluorescence intensity of probe PH-XQ was significantly enhanced, and the fluorescence enhancement ratio was about 14-fold. In addition, PH-XQ can detect not only changes in viscosity between normal cells and drug-induced inflammatory cells, but also changes in the viscosity of the hind limbs of normal mice and mice after ischemia reperfusion. SIGNIFICANCE: In particular, we are the first to successfully detect changes in handlimb viscosity after ischemia-reperfusion in mice using a probe. This study clearly elucidates changes in viscosity during ischemia-reperfusion of mouse limbs, providing favorable support for the relationship between viscosity and related diseases, and further providing a potential tool for the diagnosis of viscosity-related diseases.


Asunto(s)
Colorantes Fluorescentes , Daño por Reperfusión , Animales , Viscosidad , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ratones , Daño por Reperfusión/diagnóstico por imagen , Miembro Posterior , Masculino , Imagen Óptica , Rayos Infrarrojos , Humanos
12.
J Mater Chem B ; 12(21): 5150-5156, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757243

RESUMEN

Hydrogen sulfide (H2S) and hydrazine (N2H4) are toxic compounds in environmental and living systems, and hydrogen sulfide is also an important signaling molecule. However, in the absence of dual-color probes capable of detecting both H2S and N2H4, the ability to monitor the crosstalk of these substances is restricted. Herein, we developed an ESIPT-based dual-response fluorescent probe (BDM-DNP) for H2S and N2H4 detection via dually responsive sites. The BDM-DNP possessed absorbing strength in the detection of H2S and N2H4, with a large Stokes shift (156 nm for H2S and 108 nm for N2H4), high selectivity and sensitivity, and good biocompatibility. Furthermore, BDM-DNP can be utilized for the detection of hydrogen sulfide and hydrazine in actual soil, and gaseous H2S and N2H4 in environmental systems. Notably, BDM-DNP can detect H2S and N2H4 in living cells for disease diagnosis and treatment evaluation.


Asunto(s)
Colorantes Fluorescentes , Hidrazinas , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/análisis , Hidrazinas/química , Hidrazinas/análisis , Colorantes Fluorescentes/química , Humanos , Estructura Molecular , Color
13.
Food Chem ; 450: 139315, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615534

RESUMEN

The monitoring of formaldehyde (FA) in biosystems and real foods is critical for ensuring human health and food safety. However, the development of effective and highly selective assays for sensing FA in organisms and real food samples remains challenging. Herein, a hydrophilic group-modified the probe (Nap-FA) was reported, which utilizes the specific chemical reaction between FA and hydrazino to trigger a "turn-on" fluorescence response. The probe Nap-FA displayed superior selectivity, high sensitivity, good photostability and a low detection limit in the reaction with FA. Notably, Nap-FA has been successfully used for imaging FA in cells, zebrafish, and plant root tissues. In addition, the rationally constructed probe Nap-FA could rapidly and visually detect FA in real food samples. This work provides a prospective approach for monitoring FA in complex biological systems and food fields.


Asunto(s)
Colorantes Fluorescentes , Contaminación de Alimentos , Formaldehído , Pez Cebra , Formaldehído/química , Formaldehído/análisis , Colorantes Fluorescentes/química , Animales , Humanos , Contaminación de Alimentos/análisis , Límite de Detección , Células HeLa , Análisis de los Alimentos
14.
J Hazard Mater ; 470: 134275, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613954

RESUMEN

Palladium contaminants can pose risks to human health and the natural environment. Once Pd2+ enters the body, it can bind with DNA, proteins, and other macromolecules, disrupting cellular processes and causing serious harm to health. Therefore, it becomes critical to develop simple, highly selective and precise methods for detecting Pd2+in vivo. Here, we have successfully developed the first activated second near-infrared region fluorescence (NIR-II FL) and ratio photoacoustic (PA) probe NYR-1 for dual-modal accurate detection of Pd2+ levels. NYR-1 is capable of rapidly (< 60 s) and sensitively detection of Pd2+ in solution, providing switched on NIR-II FL920 and ratio PA808/PA720 dual-mode signal change. More notably, the probe NYR-1 was successfully used for non-invasive imaging of Pd2+ overload in mouse liver by NIR-II FL/Ratio PA dual-modality imaging technology for the first time. Thus, this work opens up a promising dual-modal detection method for the precise detection of Pd2+ in organisms and in the environment.


Asunto(s)
Colorantes Fluorescentes , Hígado , Paladio , Técnicas Fotoacústicas , Paladio/química , Animales , Hígado/diagnóstico por imagen , Hígado/metabolismo , Técnicas Fotoacústicas/métodos , Colorantes Fluorescentes/química , Ratones , Imagen Óptica , Rayos Infrarrojos , Ratones Endogámicos BALB C , Fluorescencia
15.
Luminescence ; 39(4): e4749, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658767

RESUMEN

Lipid droplet, an intracellular lipid reservoir, is vital for energy metabolism and signal transmission in cells. The viscosity directly affects the metabolism of lipid droplets, and the abnormal viscosity is associated with the occurrence and development of various diseases. Therefore, it is indispensable to develop techniques that can detect viscosity changes in intracellular lipid droplets. Based on twisted intramolecular charge transfer (TICT) mechanism, a novel small-molecule lipid droplet-targeted viscosity fluorescence probe PPF-1 was designed. The probe was easy to synthesize, it had a large Stokes shift, stable optical properties, and low bio-toxicity. Compared to being in methanol solution, the fluorescence intensity of PPF-1 in glycerol solution was increased 26.7-fold, and PPF-1 showed excellent ability to target lipid droplets. Thus, the probe PPF-1 could provide an effective means of detecting viscosity changes of lipid droplets and was of great value for physiological diagnosis of related diseases, pathological analysis, and medical research.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Viscosidad , Gotas Lipídicas/química , Humanos , Estructura Molecular , Imagen Óptica , Espectrometría de Fluorescencia
16.
Anal Methods ; 16(18): 2850-2856, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38644726

RESUMEN

Early diagnostics and therapies for diseases such as cancer are limited by the fact that the inducing factors for the development of cytopathies are not clear. The stable polarity of lipid droplets is a potential biomarker for tumor cells; however, the complex intracellular biological environment poses great difficulties for specific detection of the polarity. Therefore, to meet this pressing challenge, we designed a highly selective fluorescent probe, DCI-Cou-polar, which used the ICT mechanism to differentiate normal cells and tumor cells in tissue sections by detecting changes in the polarities of intracellular lipid droplets. The introduction of a cyclic amine at the 7-position of coumarin (benzoquinolizine coumarin) reduced its ability to donate electrons compared with the diethylamino group, which increased the probe selectivity while retaining the sensitivity to polarity. With NIR emission and large Stokes shifts, DCI-Cou-polar has high sensitivity to polarity, excellent photostability, and biocompatibility, and it tracks lipid droplets with high fidelity. Therefore, we believe that this polarity-sensitive probe provides information on the connection between the polarity of lipid droplets and tumors while improving the development of highly selective polarity probes.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Cumarinas/química , Animales , Gotas Lipídicas/química , Neoplasias/patología , Ratones , Polaridad Celular , Línea Celular Tumoral
17.
Angew Chem Int Ed Engl ; 63(21): e202402537, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509827

RESUMEN

Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Ferroptosis/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Simulación del Acoplamiento Molecular , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Ciclohexilaminas/química , Ciclohexilaminas/farmacología , Fenilendiaminas/química , Fenilendiaminas/farmacología
18.
Anal Chim Acta ; 1297: 342330, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38438225

RESUMEN

Cellular micro-environment analysis via fluorescence probe has become a powerful method to explore the early-stage cancer diagnosis and pathophysiological process of relevant diseases. The polarity change of intracellular lipid droplets (LDs) is closely linked with disorders or diseases, which result in various physiological and pathological processes. However, the efficient design strategy for lipid droplet polarity probes with high sensitivity is lacking. To overcome this difficulty, two kinds of LDs-targeting and polarity-sensitive fluorescent probes containing carbazole and siloxane groups were rationally designed and synthesized. With the carbazole-based rotor and bridge-like siloxanes, two probes (P1 and P2) behave high sensitivity to polarity changes and show different fluorescent intensity in normal and cancer cells. Notably, polysiloxanes groups promoted the response sensitivity of the probes dramatically for the polymeric microenvironment. In addition, due to the polarity changes of LDs in cancer cells, the distinct fluorescent intensities in different channels of laser scanning confocal microscope were observed between NHA cell and U87 cells. This work could offer an opportunity to monitor the dynamic behaviors of LDs and further provide a powerful tool to be potentially applied in the early-stage diagnosis of cancer.


Asunto(s)
Gotas Lipídicas , Neoplasias , Polímeros , Siloxanos , Carbazoles , Colorantes Fluorescentes , Neoplasias/diagnóstico por imagen
19.
J Mater Chem B ; 12(14): 3436-3444, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38497466

RESUMEN

ONOO-, a bioactive molecule, plays a critical role in inflammation-related signaling pathways and pathological mechanisms. Numerous studies have established a direct correlation between elevated ONOO- levels and tumor progression. Therefore, investigating ONOO- levels in inflammation and tumors is of utmost importance. Fluorescence imaging presents a highly sensitive, non-invasive, easily operable, selective, and efficient method for ONOO- detection in situ. In this study, we designed and synthesized a rhodamine-based probe, NRho, which effectively identifies tumors, inflammatory cells, tissues, and organs by detecting ONOO- content. The synthesis process of NRho is simple, yielding a probe with favorable spectral characteristics and rapid response. Our cell imaging analysis has provided novel insights, revealing distinct ONOO- levels among different types of cancer cells, with hepatocellular carcinoma cells exhibiting higher ONOO- content than the others. This observation marks the proposal of such variations in ONOO- levels across cancer cell types. Furthermore, our study has showcased the practicality of our probe in live organ imaging, enabling the identification of tumors from living organs within a brief 5-minute incubation period. Additionally, our findings highlight the rapid detection capability of the probe NRho in various tissue samples, effectively identifying inflammation. This research holds important promise in advancing biomedical research and clinical diagnosis.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/análisis , Rodaminas , Células HeLa , Inflamación/diagnóstico por imagen
20.
Angew Chem Int Ed Engl ; 63(2): e202312632, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37849219

RESUMEN

Photoacoustic (PA) imaging is emerging as one of the important non-invasive imaging techniques in biomedical research. Small molecule- second near-infrared window (NIR-II) PA dyes combined with imaging data can provide comprehensive and in-depth in vivo physiological and pathological information. However, the NIR-II PA dyes usually exhibit "always-on" properties due to the lack of a readily optically tunable group, which hinders the further applications in vivo. Herein, a novel class of dyes GX have been designed and synthesized as an activatable NIR-II PA platform, in which the absorption/emission wavelength of GX-5 extends up to 1082/1360 nm. Importantly, the GX dyes have a strong tissue penetration depth and high-resolution for the mouse vasculature structures in NIR-II PA 3D imaging and high signal-to-noise ratio in NIR-II fluorescence (FL) imaging. Furthermore, to demonstrate the applicability of GX dyes, the first NIR-II PA probe GX-5-CO activated by carbon monoxide (CO) was engineered and employed to reveal the enhancement of the CO levels in the hypertensive mice by high-contrast NIR-II PA and FL imaging. We expect that many derivatives of GX dyes will be developed to afford versatile NIR-II PA platforms for designing a wide variety activatable NIR-II PA probes as biomedical tools.


Asunto(s)
Colorantes Fluorescentes , Técnicas Fotoacústicas , Ratones , Animales , Colorantes Fluorescentes/química , Análisis Espectral , Imagen Óptica/métodos , Técnicas Fotoacústicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA