Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
1.
J Inflamm Res ; 17: 2927-2938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764496

RESUMEN

Purpose: This study aimed to explore the therapeutic effect and potential mechanism of heparin-binding protein (HBP) reduction on sepsis-related acute lung injury. Methods: We utilized a murine model of sepsis-induced by intraperitoneal injection of lipopolysaccharides (LPS) in C57BL/6J mice divided into four groups: Control, LPS, Anti-HBP, and ceftriaxone (CEF). Following sepsis induction, Anti-HBP or CEF treatments were administered, and survival rates were monitored for 48 h. We then used reverse-transcription quantitative PCR to analyze the expression levels of HBP in lung tissues, immunohistochemistry for protein localization, and Western blotting for protein quantification. Pulmonary inflammation was assessed using enzyme-linked immunosorbent assays of proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1ß, IL-6, and interferon-γ). The activation state of the aryl hydrocarbon receptor (AhR) signaling pathway was determined via Western blotting, evaluating both cytoplasmic and nuclear localization of AhR and the expression of cytochrome P450 1A1 protein by its target gene. Results: Anti-HBP specifically reduced HBP levels. The survival rate of mice in the Anti-HBP and CEF groups was much higher than that in the LPS group. The severity of lung injury and pulmonary inflammatory response in the Anti-HBP and CEF groups was significantly lower than that in the LPS group. AhR signaling pathway activation was observed in the Anti-HBP and CEF groups. Additionally, there was no significant difference in the above indices between the Anti-HBP and CEF groups. Conclusion: HBP downregulation in lung tissues significantly improved LPS-induced lung injury and the pulmonary inflammatory response, thereby prolonging the survival of sepsis mice, suggesting activation of the AhR signaling pathway. Moreover, the effect of lowering the HBP level was equivalent to that of the classical antibiotic CEF. Trial Registration: Not applicable.

3.
J Colloid Interface Sci ; 669: 775-786, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38744155

RESUMEN

Supramolecular flame retardants have attracted increasing attention recently due to their simple and eco-friendly preparation process. In this study, a novel flame retardant HEPFR was prepared using supramolecular self-assembly technology between piperazine and 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP). It was introduced into polyvinyl alcohol (PVA) matrix to form PVA/HEPFR composite film. Subsequently, the transparency, mechanical properties, thermal stability, and flame retardancy of PVA/HEPFR films were studied. Due to the hydrogen bonded cross-linked network structure between PVA and HEPFR, the mechanical properties of PVA/HEPFR films have been improved, while maintaining good transparency. With 10 wt% addition of HEPFR, PVA films can reach the VTM-0 level in UL-94 testing. And the limiting oxygen index can be increased from 18.5% of pure PVA to 26.5%. The peak heat release rate was reduced by 61.5%. The flame retardancy and thermal stability of PVA/HEPFR films have been greatly improved. This study provides a "one stone, three birds" strategy for preparing flame-retardant, transparent, and robust PVA film.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38607220

RESUMEN

Objective: This study aims to analyze factors contributing to recurrent respiratory tract infections (RRTIs) in pediatric patients and evaluate the efficacy of pidotimod (PI) treatment. Methods: This study utilized a retrospective cohort design, enrolling a total of 85 children diagnosed with RRTIs between September 2020 and September 2022, alongside 54 healthy children. Logistic regression analysis was employed to identify factors contributing to RRTI occurrence. Among the participants, 40 children underwent conventional treatment (control group), while 45 received PI treatment (research group). Comparative analyses were conducted to assess clinical efficacy and adverse effects between the two treatment groups. Results: The history of family members' smoking and parental allergy emerged as independent risk factors for RRTIs (P < .05, OR>1), whereas parental education level, outdoor activity, and micronutrient intake were identified as independent protective factors for RRTIs (P < .05, OR<1). Symptoms such as cough, fever, rhonchi, moist rales, and tonsillar enlargement resolved significantly faster in the research group compared to the control group (P < .05). Additionally, the research group exhibited reduced infection duration and fewer recurrent infections (P < .05). Following treatment, the overall treatment efficacy was superior in the research group compared to the control group (P < .05), with no significant difference in the incidence of adverse effects (P > .05). Post-treatment, levels of CD3+, CD4+, and CD4+/CD8+ were elevated in the research group compared to the control group, while CD8+ levels were lower (P < .05). Conclusions: Daily outdoor activity among children, family members' history of smoking, parental allergy history, education level, and micronutrient intake emerged as independent factors influencing pediatric RRTIs. Furthermore, PI was identified as a significant treatment option for RRTIs.

5.
Diabetes Obes Metab ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618970

RESUMEN

AIM: This study assessed the efficacy and safety of co-administering retagliptin and henagliflozin versus individual agents at corresponding doses in patients with type 2 diabetes mellitus who were inadequately controlled with metformin. METHODS: This multicentre, phase 3 trial consisted of a 24-week, randomized, double-blind, active-controlled period. Patients with glycated haemoglobin (HbA1c) levels between 7.5% and 10.5% were randomized to receive once-daily retagliptin 100 mg (R100; n = 155), henagliflozin 5 mg (H5; n = 156), henagliflozin 10 mg (H10; n = 156), co-administered R100/H5 (n = 155), or R100/H10 (n = 156). The primary endpoint was the change in HbA1c from baseline to week 24. RESULTS: Based on the primary estimand, the least squares mean reductions in HbA1c at week 24 were significantly greater in the R100/H5 (-1.51%) and R100/H10 (-1.54%) groups compared with those receiving the corresponding doses of individual agents (-0.98% for R100, -0.86% for H5 and -0.95% for H10, respectively; p < .0001 for all pairwise comparisons). Achievement of HbA1c <7.0% at week 24 was observed in 27.1% of patients in the R100 group, 21.2% in the H5 group, 24.4% in the H10 group, 57.4% in the R100/H5 group and 56.4% in the R100/H10 group. Reductions in fasting plasma glucose and 2-h postprandial glucose were also more pronounced in the co-administration groups compared with the individual agents at corresponding doses. Decreases in body weight and systolic blood pressure were greater in the groups containing henagliflozin than in the R100 group. The incidence rates of adverse events were similar across all treatment groups, with no reported episodes of severe hypoglycaemia. CONCLUSIONS: For patients with type 2 diabetes mellitus inadequately controlled by metformin monotherapy, the co-administration of retagliptin and henagliflozin yielded more effective glycaemic control through 24 weeks compared with the individual agents at their corresponding doses.

6.
Langmuir ; 40(18): 9449-9461, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38659090

RESUMEN

Repairable superhydrophobic surfaces have promising application potential in many fields. However, so far, it is still a challenge to develop a superhydrophobic surface with repairability for multiple types of damage through a simple method. In this paper, a repairable superhydrophobic coating was obtained on various substrates by blade-coating mixtures of polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), and multiwalled carbon nanotubes (MWCNTs) modified with dopamine (PDA) and octadecylamine (ODA). The obtained coating has a good liquid-repellent property with a water contact angle above 150° and a water sliding angle of ∼6° and possesses an excellent absorbance (∼97%) in the wavelength range of 250-2500 nm. Due to its high absorbance, the coating displays an outstanding photothermal effect with a temperature rise of ∼65 °C under irradiation by 1.0 kW/m2 of simulated sunlight. Furthermore, after being degraded by multiple stimuli, including plasma treatment, acid/alkali/oil immersion, sand impact, and the icing-thawing cycle, the coating can recover superhydrophobicity via sunlight irradiation, demonstrating the good photothermal-induced repairability of the coating. It can be expected that the good water-repellent property, photothermal effect, and repairability give this coating a promising prospect in practical applications.

7.
J Immunother Cancer ; 12(4)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688579

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS: We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS: We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS: These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.


Asunto(s)
Citomegalovirus , Glioblastoma , Humanos , Glioblastoma/inmunología , Glioblastoma/virología , Glioblastoma/patología , Ratones , Citomegalovirus/inmunología , Animales , Infecciones por Citomegalovirus/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología , RNA-Seq , Femenino , Masculino , Análisis de Expresión Génica de una Sola Célula
8.
J Vis Exp ; (205)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497623

RESUMEN

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by symptoms such as dry mouth, dry eyes, and other systematic symptoms. Due to the hyposalivation experienced by pSS patients, oral dysbacteriosis often occurs. A common complication of pSS is the oral Candida infection. In this article, the authors describe systematic methods that can effectively diagnose oral Candida infection and identify the Candida strains using saliva, oral mucosal swabs, or mouthwash from pSS patients. The Sabouraud's Dextrose Agar (SDA), hyphal formation assay, potassium hydroxide (KOH) smear test, and calcofluor white (CFW) staining assay are used for the diagnosis of oral Candida infection. A Candida diagnostic agar is used for the identification of Candida strains. Finally, antifungal susceptibility testing is used to determine appropriate antifungal drug treatment. This standardized method can enhance the diagnosis, treatment, and future research of pSS-related oral Candida infections. Early diagnosis, using this method, can also prevent any complications arising due to delay in receiving appropriate treatment.


Asunto(s)
Antifúngicos , Candidiasis , Hidróxidos , Compuestos de Potasio , Humanos , Agar , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida
9.
Adv Mater ; : e2313389, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485221

RESUMEN

Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.

10.
Sci Adv ; 10(12): eadm9314, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507494

RESUMEN

Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. Here, we develop a set of millimeter-scale, chip-less, and battery-less magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.


Asunto(s)
Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Animales , Ratas , Prótesis e Implantes , Fenómenos Físicos , Fenómenos Magnéticos
11.
Small ; : e2400161, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431936

RESUMEN

Hydrogels are currently in the limelight for applications in soft electronics but they suffer from the tendency to lose water or freeze when exposed to dry environments or low temperatures. Molecular crowding is a prevalent occurrence in living cells, in which molecular crowding agents modify the hydrogen bonding structure, causing a significant reduction in water activity. Here, a wide-humidity range applicable, anti-freezing, and robust hydrogel is developed through the incorporation of natural amino acid proline (Pro) and conductive MXene into polyvinyl alcohol (PVA) hydrogel networks. Theoretical calculations reveal that Pro can transform "free water" into "locked water" via the molecular-crowding effect, thereby suppressing water evaporation and ice forming. Accordingly, the prepared hydrogel exhibits high water retention capability, with 77% and 55% being preserved after exposure to 20 °C, 28% relative humidity (RH) and 35 °C, 90% RH for 12 h. Meanwhile, Pro lowers the freezing temperature of the hydrogel to 34 °C and enhances its stretchability and strength. Finally, the PVA/Pro/MXene hydrogels are assembled as multifunctional on-skin strain sensors and conductive electrodes to monitor human motions and detect tiny electrophysiological signals. Collectively, this work provides a molecular crowding strategy that will motivate researchers to develop more advanced hydrogels for versatile applications.

12.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418607

RESUMEN

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Apoptosis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422020

RESUMEN

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anciano , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Envejecimiento/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Pronóstico
14.
Clin Transl Med ; 14(2): e1564, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38344897

RESUMEN

Defective decidualization of endometrial stromal cells (ESCs) in endometriosis (EM) patients leads to inadequate endometrial receptivity and EM-associated infertility. Hypoxia is an inevitable pathological process of EM and participates in deficient decidualization of the eutopic secretory endometrium. Enhancer of zeste homology 2 (EZH2) is a methyltransferase which catalyses H3K27Me3, leading to decreased expression levels of target genes. Although EZH2 expression is low under normal decidualization, it is abundantly increased in the eutopic secretory endometrium of EM and is induced by hypoxia. Chromatin immunoprecipitation-PCR results revealed that decidua marker IGFBP1 is a direct target of EZH2, partially explaining the increased levels of histone methylation modification in defected decidualization of EM. To mechanism controlling this, we examined the effects of hypoxia on EZH2 and decidualization. EZH2 mRNA showed decreased m6 A modification and increased expression levels under hypoxia and decidualization combined treatment. Increased EZH2 expression was due to the increased expression of m6 A demethylase ALKBH5 and decreased expression of the m6 A reader protein YTHDF2. YTHDF2 directly bind to the m6 A modification site of EZH2 to promote EZH2 mRNA degradation in ESCs. Moreover, selective Ezh2 depletion in mouse ESCs increased endometrial receptivity and improved mouse fertility by up-regulating decidua marker IGFBP1 expression. This is the first report showing that YTHDF2 can act as a m6 A reader to promote decidualization by decreasing the stability of EZH2 mRNA and further increasing the expression of IGFBP1 in ESCs. Taken together, our findings highlight the critical role of EZH2/H3K27Me3 in decidualization and reveal a novel epigenetic mechanism by which hypoxia can suppress EM decidualization by decreasing the m6 A modification of EZH2 mRNA.


Asunto(s)
Endometriosis , Infertilidad , Femenino , Humanos , Animales , Ratones , Endometriosis/genética , Endometriosis/metabolismo , Histonas/genética , Histonas/metabolismo , ARN/metabolismo , Factores de Transcripción/metabolismo , ARN Mensajero/metabolismo , Metilación , Hipoxia/complicaciones , Hipoxia/genética
15.
Cell Rep ; 43(3): 113818, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38402586

RESUMEN

Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and ß-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Células Ependimogliales , Femenino , Embarazo , Humanos , Células Ependimogliales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina/metabolismo , Uniones Adherentes/metabolismo , Corteza Cerebral/metabolismo , Neurogénesis , Proteínas Portadoras/metabolismo
16.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387144

RESUMEN

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Asunto(s)
Gutatión-S-Transferasa pi , Uranio , Adulto , Humanos , Gutatión-S-Transferasa pi/genética , Radiación Ionizante , Rayos gamma/efectos adversos , Apoptosis
17.
Environ Int ; 185: 108496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359549

RESUMEN

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Edulcorantes/toxicidad , Edulcorantes/análisis , Edulcorantes/metabolismo , Suelo , Contaminantes Químicos del Agua/análisis , Ciclamatos/análisis , Amino Azúcares , Nucleótidos
18.
Cancer Lett ; 587: 216712, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38364962

RESUMEN

Gastric cancer (GC) is a common malignant tumor of the digestive tract, and chemoresistance significantly impacts GC patients' prognosis. PANoptosis has been associated with oxaliplatin-induced cell death. However, the direct regulatory role of YBX1 in cellular chemoresistance through PANoptosis remains unclear. In this study, we investigated the impact of YBX1 on regulating PANoptosis and its influence on the resistance of gastric cancer cells to oxaliplatin. Through overexpression and silencing experiments, we assessed YBX1's effect on proliferation and PANoptosis regulation in gastric cancer cells. Additionally, we identified PPM1B and USP10 as interacting proteins with YBX1 and confirmed their influence on YBX1 molecular function and protein expression levels. Our results demonstrate that YBX1 suppresses PANoptosis, leading to enhanced resistance of gastric cancer cells to oxaliplatin. Furthermore, we found that PPM1B and USP10 play critical roles in regulating YBX1-mediated PANoptosis inhibition. PPM1B directly interacts with YBX1, causing dephosphorylation of YBX1 at serine 314 residue. This dephosphorylation process affects the deubiquitination of YBX1 mediated by USP10, resulting in decreased YBX1 protein expression levels and impacting PANoptosis and oxaliplatin resistance in gastric cancer cells. Additionally, we discovered that the 314th amino acid of YBX1 has a profound impact on its own protein expression abundance, thereby affecting the functionality of YBX1. In conclusion, our study reveals the significance of PPM1B-mediated dephosphorylation of YBX1 and USP10-mediated deubiquitination in regulating PANoptosis and sensitivity to oxaliplatin in gastric cancer cells. These findings offer a potential therapeutic strategy for patients with oxaliplatin-resistant gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Antineoplásicos , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ubiquitina Tiolesterasa/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína Fosfatasa 2C/metabolismo
19.
Heliyon ; 10(3): e25090, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327425

RESUMEN

The mention of the COVID-19 waves is as prevalent as the pandemic itself. Identifying the beginning and end of the wave is critical to evaluating the impact of various COVID-19 variants and the different pharmaceutical and non-pharmaceutical (including economic, health and social, etc.) interventions. We demonstrate a scientifically robust method to identify COVID-19 waves and the breaking points at which they begin and end from January 2020 to June 2021. Employing the Break Least Square method, we determine the significance of COVID-19 waves for global-, regional-, and country-level data. The results show that the method works efficiently in detecting different breaking points. Identifying these breaking points is critical for evaluating the impact of the economic, health, social and other welfare interventions implemented during the pandemic crisis. Employing our method with high frequency data effectively determines the start and end points of the COVID-19 wave(s). Identifying waves at the country level is more relevant than at the global or regional levels. Our research results evidenced that the COVID-19 wave takes about 48 days on average to subside once it begins, irrespective of the circumstances.

20.
Bioact Mater ; 33: 355-376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282639

RESUMEN

Natural polymers are complex organic molecules that occur in the natural environment and have not been subjected to artificial synthesis. They are frequently encountered in various creatures, including mammals, plants, and microbes. The aforementioned polymers are commonly derived from renewable sources, possess a notable level of compatibility with living organisms, and have a limited adverse effect on the environment. As a result, they hold considerable significance in the development of sustainable and environmentally friendly goods. In recent times, there has been notable advancement in the investigation of the potential uses of natural polymers in the field of biomedicine, specifically in relation to natural biomaterials that exhibit antibacterial and antioxidant characteristics. This review provides a comprehensive overview of prevalent natural polymers utilized in the biomedical domain throughout the preceding two decades. In this paper, we present a comprehensive examination of the components and typical methods for the preparation of biomaterials based on natural polymers. Furthermore, we summarize the application of natural polymer materials in each stage of skin wound repair. Finally, we present key findings and insights into the limitations of current natural polymers and elucidate the prospects for their future development in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...