Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Nano ; 18(14): 9980-9996, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38387068

RESUMEN

Human hands are amazingly skilled at recognizing and handling objects of different sizes and shapes. To date, soft robots rarely demonstrate autonomy equivalent to that of humans for fine perception and dexterous operation. Here, an intelligent soft robotic system with autonomous operation and multimodal perception ability is developed by integrating capacitive sensors with triboelectric sensor. With distributed multiple sensors, our robot system can not only sense and memorize multimodal information but also enable an adaptive grasping method for robotic positioning and grasp control, during which the multimodal sensory information can be captured sensitively and fused at feature level for crossmodally recognizing objects, leading to a highly enhanced recognition capability. The proposed system, combining the performance and physical intelligence of biological systems (i.e., self-adaptive behavior and multimodal perception), will greatly advance the integration of soft actuators and robotics in many fields.

2.
Adv Sci (Weinh) ; 8(21): e2102539, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34473423

RESUMEN

The stress-response strategy is one of the nature's greatest developments, enabling animals and plants to respond quickly to environmental stimuli. One example is the stress-response strategy of the Venus flytrap, which enables such a delicate plant to perceive and prey on insects at an imperceptible speed by their soft terminal lobes. Here, inspired by this unique stress-response strategy, a soft gripper that aims at the challenges of high-speed dynamic grasping tasks is presented. The gripper, called high-speed soft gripper (HSG), is based on two basic design concepts. One is a snap-through instability that enables the HSG to sense the mechanical stimuli and actuating instantly. The other one is the spider-inspired pneumatic-powered control system that makes the trigger process repeatable and controllable. Utilizing the stress-response strategy, the HSG can accomplish high-speed sensing and grasping and handle a dynamic grasping task like catching a thrown baseball. Whereas soft machines typically exhibit slow locomotion speed and low manipulation strength for the intrinsic limitations of soft materials, the exploration of the stress-response strategy in this study can help pave the way for designing a new generation of practical high-speed soft robots.


Asunto(s)
Robótica , Fenómenos Biológicos , Diseño de Equipo , Poliuretanos/química , Resistencia a la Tracción
3.
Sci Adv ; 7(34)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34417171

RESUMEN

Soft robotics revolutionized human-robot interactions, yet there exist persistent challenges for developing high-performance soft actuators that are powerful, rapid, controllable, safe, and portable. Here, we introduce a class of self-contained soft electrofluidic actuators (SEFAs), which can directly convert electrical energy into the mechanical energy of the actuators through electrically responsive fluids that drive the outside elastomer deformation. The use of special dielectric liquid enhances fluid flow capabilities, improving the actuation performance of the SEFAs. SEFAs are easily manufactured by using widely available materials and common fabrication techniques, and display excellent comprehensive performances in portability, controllability, rapid response, versatility, safety, and actuation. An artificial muscle stretching a joint and a soft bionic ray swimming in a tank demonstrate their effective performance. Hence, SEFAs offer a platform for developing soft actuators with potential applications in wearable assistant devices and soft robots.

4.
Nat Commun ; 12(1): 2247, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854071

RESUMEN

Recent advances in soft materials enable robots to possess safer human-machine interaction ways and adaptive motions, yet there remain substantial challenges to develop universal driving power sources that can achieve performance trade-offs between actuation, speed, portability, and reliability in untethered applications. Here, we introduce a class of fully soft electronic pumps that utilize electrical energy to pump liquid through electrons and ions migration mechanism. Soft pumps combine good portability with excellent actuation performances. We develop special functional liquids that merge unique properties of electrically actuation and self-healing function, providing a direction for self-healing fluid power systems. Appearances and pumpabilities of soft pumps could be customized to meet personalized needs of diverse robots. Combined with a homemade miniature high-voltage power converter, two different soft pumps are implanted into robotic fish and vehicle to achieve their untethered motions, illustrating broad potential of soft pumps as universal power sources in untethered soft robotics.

5.
Soft Robot ; 5(2): 164-174, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29297768

RESUMEN

A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...