Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MedComm (2020) ; 5(3): e504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469551

RESUMEN

The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.

2.
Mol Biotechnol ; 66(2): 332-353, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37154865

RESUMEN

Pyroptosis is a novel type of cell death observed in various diseases. Our study aimed to investigate the relationship between pyroptosis-associated-long non-coding RNAs (lncRNAs), immune infiltration, and expression of immune checkpoints in the setting of lung adenocarcinoma and the prognostic value of pyroptosis-related lncRNAs. RNA-seq transcriptome data and clinical information from The Cancer Genome Atlas (TCGA) were downloaded, and consensus clustering analysis was used to separate the samples into two groups. Least absolute shrinkage and selection operator (LASSO) analyses were conducted to construct a risk signature. The association between pyroptosis-associated lncRNAs, immune infiltration, and expression of immune checkpoints were analysed. The cBioPortal tool was used to discover genomic alterations. Gene set enrichment analysis (GSEA) was utilized to investigate downstream pathways of the two clusters. Drug sensitivity was also examined. A total of 43 DEGs and 3643 differentially expressed lncRNAs were identified between 497 lung adenocarcinoma tissues and 54 normal samples. A signature consisting of 11 pyroptosis-related lncRNAs was established as prognostic for overall survival. Patients in the low-risk group have a significant overall survival advantage over those in the high-risk group in the training group. Immune checkpoints were expressed differently between the two risk groups. Risk scores were validated to develop an independent prognostic model based on multivariate Cox regression analysis. The area under time-dependent receiver operating characteristic curve (AUC of the ROC) at 1-, 3-, and 5-years measured0.778, 0.757, and 0.735, respectively. The high-risk group was more sensitive to chemotherapeutic drugs than the low-risk group. This study demonstrates the association between pyroptosis-associated lncRNAs and prognosis in lung adenocarcinoma and enables a robust predictive signature of 11 lncRNAs to inform overall survival.


Asunto(s)
Adenocarcinoma , ARN Largo no Codificante , Humanos , Piroptosis/genética , ARN Largo no Codificante/genética , Biomarcadores , Muerte Celular , Adenocarcinoma/genética
3.
Heliyon ; 9(11): e20708, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920509

RESUMEN

Background: Acquired resistance to targeted drugs is a major challenge in cancer. The drug-tolerant state has been proposed to be an initial step towards acquisition of real drug-resistance. Drug tolerant persister (DTP) cells are purported to survive during treatment and stay dormant for several years. Single cell sequencing can provide a comprehensive landscape of gene expression in DTP cells, which can facilitate investigation of heterogeneity of a drug tolerant state and identification of new anticancer targets. Methods: The genetic profiling of DTPs was explored by integrating Gene Expression Omnibus (GEO) datasets, and a prognostic signature of DTP-related genes (DTPRGs) in lung adenocarcinoma of TCGA LUAD cohort was constructed. The scores of infiltrating immune cells were calculated and activity of immune-related pathways was evaluated by single-sample gene set enrichment analysis (ssGSEA). Functional enrichment analysis of the DTPRGs between low- and high-risk groups was performed. Immune cell subtypes and immune-related pathways were analyzed. Results: An 11-gene panel (MT2A, UBE2S, CLTB, KRT7, IGFBP3, CTSH, NPC2, HMGA1, HNRNPAB, DTYMK, and IHNA) was established. DTPRGs were mainly correlated with nuclear division, chromosome segregation, and cell cycle pathways. Infiltration of immune cells was lower in the high-risk group while the inflammation-promoting and MCH-class I response pathway had higher activity in the high-risk group. A nomogram was generated with prognostic accuracy, further validated using clinical outcomes following therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). Discussion: A prognostic model of lung adenocarcinoma based on DTPRGs was constructed. Targeting DTP cells is a potential therapeutic approach to prevent a drug tolerant state.

4.
J Hepatol ; 79(3): 741-757, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230230

RESUMEN

BACKGROUND & AIMS: Temporal oscillations in intestinal nutrient processing and absorption are coordinated by the local clock, which leads to the hypothesis that the intestinal clock has major impacts on shaping peripheral rhythms via diurnal nutritional signals. Here, we investigate the role of the intestinal clock in controlling liver rhythmicity and metabolism. METHODS: Transcriptomic analysis, metabolomics, metabolic assays, histology, quantitative (q)PCR, and immunoblotting were performed with Bmal1-intestine-specific knockout (iKO), Rev-erba-iKO, and control mice. RESULTS: Bmal1 iKO caused large-scale reprogramming of the rhythmic transcriptome of mouse liver with a limited effect on its clock. In the absence of intestinal Bmal1, the liver clock was resistant to entrainment by inverted feeding and a high-fat diet. Importantly, Bmal1 iKO remodelled diurnal hepatic metabolism by shifting to gluconeogenesis from lipogenesis during the dark phase, leading to elevated glucose production (hyperglycaemia) and insulin insensitivity. Conversely, Rev-erba iKO caused a diversion to lipogenesis from gluconeogenesis during the light phase, resulting in enhanced lipogenesis and an increased susceptibility to alcohol-related liver injury. These temporal diversions were attributed to disruption of hepatic SREBP-1c rhythmicity, which was maintained via gut-derived polyunsaturated fatty acids produced by intestinal FADS1/2 under the control of a local clock. CONCLUSIONS: Our findings establish a pivotal role for the intestinal clock in dictating liver rhythmicity and diurnal metabolism, and suggest targeting intestinal rhythms as a new avenue for improving metabolic health. IMPACT AND IMPLICATIONS: Our findings establish the centrality of the intestinal clock among peripheral tissue clocks, and associate liver-related pathologies with its malfunction. Clock modifiers in the intestine are shown to modulate liver metabolism with improved metabolic parameters. Such knowledge will help clinicians improve the diagnosis and treatment of metabolic diseases by incorporating intestinal circadian factors.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Hígado/patología , Glucosa/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica
5.
Front Pharmacol ; 13: 991917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249807

RESUMEN

Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine widely used to treat disorders such as hypertension, dysentery and hemorrhaging. Here, we aimed to assess the pharmacological effects of SBG on skin aging and to investigate the underlying mechanisms. Mice with skin aging were established by treatment with D-galactose and ultraviolet-B. SBG (topical application) showed a protective effect on skin aging in mice, as evidenced by less formation of skin wrinkles, higher levels of SOD (superoxide dismutase) and HYP (hydroxyproline) as well as a lower level of MDA (malondialdehyde). In the meantime, skin MMP-1 and p53 expression were lower, epidermis was thinner and collagen amount was higher in SBG-treated mice. Anti-skin aging effects of SBG were also confirmed in NIH3T3 and HaCaT cells, as well as in mouse primary dermal fibroblasts and human primary epidermal keratinocytes. Furthermore, we found that loss of Rev-erbα (a known repressor of Bmal1) up-regulated skin BMAL1 (a clock component and a known anti-aging factor) and ameliorated skin aging in mice. Moreover, SBG dose-dependently increased the expression of BMAL1 in the skin of aged mice and in senescent NIT3H3 cells. In addition, based on a combination of Gal4 chimeric, luciferase reporter and expression assays, SBG was identified as an antagonist of REV-ERBα and thus an inducer of BMAL1 expression. In conclusion, SBG antagonizes REV-ERBα to up-regulate BMAL1 and to protect against skin aging in mice.

6.
ACS Appl Mater Interfaces ; 14(21): 24798-24805, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603575

RESUMEN

Polyethylene oxide (PEO)-based solid electrolytes have been widely studied in all-solid-state lithium (Li) metal batteries due to their favorable interfacial contact with electrodes, facile fabrication, and low cost, but their inferior Li dendrite suppression capability renders low actual areal capacities of Li metal anodes. Here, we develop a high-capacity all-solid-state battery using a metal-organic framework hosted silicon (Si@MOF) anode and a fiber-supported PEO/garnet composite electrolyte. Si nanoparticles are embedded in the micro-sized MOF-derived carbon host, which efficiently accommodates the repeated deformation of Si over cycles while providing sufficient charge transfer pathways. As a result, the Si@MOF anode shows excellent interfacial stability toward the composite polymer electrolyte for over 1000 h and achieves a high reversible areal capacity of 3 mAh cm-2. The full cell using the LiFePO4 (LFP) cathode is able to deliver 135 mAh g-1 initially and maintains 73.1% of the capacity after 500 cycles at 0.5 C and 60 °C. More remarkably, the full cells with high LFP loadings achieve areal capacities of more than 2 mAh cm-2, exceeding most PEO-based ASSBs using metallic Li. Finally, the pouch cell using the proposed design exhibits decent electrochemical performance and high safety.

7.
Drug Metab Dispos ; 50(5): 591-599, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246462

RESUMEN

Solute carrier family 2 member 9 (SLC2A9) is a voltage-driven transporter that mediates cellular uptake and efflux of various substrates such as uric acid. Here, we investigate the role of E4 promoter-binding protein 4 (E4BP4), a transcription factor, in regulating hepatic SLC2A9 in mice. Effects of E4BP4 on hepatic SLC2A9 and other transporters were examined using E4bp4 knockout (E4bp4 -/-) mice. Transporting activity of SLC2A9 was assessed using uric acid as a prototypical substrate. We found that three SLC genes (i.e., Slc2a9, Slc17a1, and Slc22a7) were upregulated in the liver in E4bp4-/- mice with Slc2a9 altered the most. E4bp4 ablation in mice dampened the daily rhythm in hepatic SLC2A9, in addition to increasing its expression. Furthermore, E4bp4-/- mice showed increased hepatic uric acid but reduced uric acid in the plasma and urine. Consistently, allantoin, a metabolite of uric acid generated in the liver, was increased in the liver of E4bp4-/- mice. E4bp4 ablation also protected mice from potassium oxonate-induced hyperuricemia. Moreover, negative effects of E4BP4 on SLC2A9 were validated in Hepa-1c1c7 and primary mouse hepatocytes. Additionally, according to luciferase reporter and chromatin immunoprecipitation assays, E4BP4 repressed Slc2a9 transcription and expression via direct binding to a D-box (-531 bp to -524 bp) in the P2 promoter. In conclusion, E4BP4 was identified as a novel regulator of SLC2A9 and uric acid homeostasis, which might facilitate new therapies for reducing uric acid in various conditions related to hyperuricemia. SIGNIFICANCE STATEMENT: Our findings identify E4BP4 as a novel regulator of SLC2A9 and uric acid homeostasis, which might facilitate new therapies for reducing uric acid in various conditions related to hyperuricemia.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Hiperuricemia , Ácido Úrico , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Hiperuricemia/metabolismo , Hígado/metabolismo , Ratones , Factores de Transcripción/metabolismo , Ácido Úrico/metabolismo
8.
Theranostics ; 12(4): 1589-1606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198059

RESUMEN

While growing evidence suggests that circadian clock and obesity are intertwined, the underlying mechanism is poorly understood. Here, we investigate how circadian clock is linked to obesity. Methods: Metabolomics profiling of WAT (white adipose tissue) samples was performed to identify the metabolites altered in obese model. mRNA levels were analyzed by qPCR assays. Proteins were detected by immunoblotting, immunofluorescence and ELISA. ChIP and luciferase reporter assays were used to investigate epigenetic and transcriptional regulation. Results: Obesity causes perturbance of circadian clock in WAT in mice and humans, particularly, BMAL1 is markedly reduced. Metabolomic analysis reveals reduced glutamine and methionine in obese WAT. Glutamine metabolism contributes to production of acetyl-CoA, whereas methionine metabolism generates S-adenosyl methionine (SAM). Acetyl-CoA and SAM are the substrates for histone acetylation and methylation, respectively. Reduced glutamine and methionine in obese WAT are associated with decreased H3K27ac and H3K4me3 at Bmal1 promoter. Consistently, glutamine or methionine administration in vitro and in vivo increases H3K27ac or H3K4me3, promoting Bmal1 transcription and expression. A screen of transport and metabolic genes identifies downregulation of the uptake transporter SLC1A5 as a cause of reduced glutamine or methionine in obese WAT. Moreover, we observe impaired expression of PPAR-γ in obese WAT. PPAR-γ trans-activates Slc1a5 via direct binding to a response element in promoter. Conclusion: Impaired PPAR-γ in obesity provokes downregulation of SLC1A5 and reductions in adipocyte uptake of glutamine and methionine (two epigenetic modulators), leading to disruption of Bmal1. Therefore, PPAR-γ integrates obesity and adipocyte clock, promoting a vicious cycle between circadian disruption and obesity development.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas CLOCK , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Adipocitos/metabolismo , Animales , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Epigénesis Genética , Regulación de la Expresión Génica , Glutamina/metabolismo , Humanos , Metionina , Ratones , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/metabolismo
9.
Front Pharmacol ; 13: 1088294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618934

RESUMEN

Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.

10.
ACS Appl Mater Interfaces ; 13(44): 52659-52669, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723460

RESUMEN

Zinc metal holds a great potential as an anode material for next-generation aqueous batteries due to its suitable redox potential, high specific capacity, and low cost. However, the uncontrollable dendrite growth and detrimental side reactions with electrolytes hinder the practical application of this type of electrodes. To tackle the issues, an ultrathin (∼1 µm) sulfonated poly(ether ether ketone) (SPEEK) solid-electrolyte interphase (SEI) is constructed onto the Zn anode surface by a facile spin-coating method. We demonstrate that the polymeric SEI simultaneously blocks the water molecules and anions, uniformizes the ion flux, and facilitates the desolvation process of Zn2+ ions, thus effectively suppressing the side reactions and Zn dendrite formation. As a result, the newly developed Zn@SPEEK anode enables a symmetric cell to stably operate over 1000 cycles at 5 mA cm-2 without degradation. Moreover, with the Zn anode paired with a MnO2 cathode, the full cell exhibits an improved Coulombic efficiency (over 99% at 0.1 A g-1), a superior rate capability (127 mA h g-1 at 2 A g-1), and excellent cycling stability (capacity retention of 70% over 1000 cycles at 1 A g-1). This work provides a facile yet effective strategy to address the critical challenges in Zn anodes, paving the way for the development of high-performance rechargeable aqueous batteries.

11.
Xenobiotica ; 51(10): 1101-1109, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34382487

RESUMEN

miR-199a-5p is an important regulator of many biological processes. However, whether and how CYP enzymes are regulated by miR-199a-5p are unknown. Here, we aimed to investigate the potential role of mmu-miR-199a-5p in regulating CYP2 enzymes.Regulatory effects of mmu-miR-199a-5p on CYP expression were assessed in mouse AML-12 hepatocytes. The metabolic activity of CYP2B10 was probed using cyclophosphamide (CPA) as a specific substrate. The regulatory mechanism was investigated using combined luciferase reporter assays and chromatin immunoprecipitation.Of several important drug-metabolizing CYPs, mmu-miR-199a-5p significantly increased the mRNA levels of Cyp2a10, Cyp2c29, and Cyp2j5 in AML-12 cells with Cyp2a10 altered the most. Consistently, mmu-miR-199a-5p enhanced the expression of CYP2B10 protein and cellular metabolism of CPA. Based on database analysis, Cyp2b10 was not a direct target gene of mmu-miR-199a-5p. Thus, a mediator is necessary for the miRNA regulation of CYP2B10. We found that E4BP4 repressed Cyp2b10 transcription and expression through specific binding to a D-box element in the gene promoter. Moreover, mmu-miR-199a-5p inhibited the expression of E4bp4 at the posttranscriptional level by directly targeting the 59-65 nt segment in its 3'-UTR.In conclusion, mmu-miR-199a-5p positively regulates CYP2B10 expression through inhibiting its repressor E4BP4. Our findings may provide an increased understanding of the complex regulatory pathways for CYP2B10.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Regiones no Traducidas 3' , Animales , Hepatocitos , Ratones , MicroARNs/genética , ARN Mensajero
12.
Front Pharmacol ; 12: 673263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108880

RESUMEN

Rheumatoid arthritis is a systemic autoimmune disease characterized by synovial inflammation and bone destruction. Identifying drugs with time-varying efficacy and toxicity, and elucidating the mechanisms would help to improve treatment efficacy and reduce adverse effects. Here, we aimed to determine the chronoefficacy of semen strychni (SS) and tripterygium glycoside tablet (TGT) against rheumatoid arthritis in mice, and to investigate a potential role of circadian pharmacokinetics in generating chronoefficacy. SS extract and TGT suspension were prepared with ultrasonication. Effects of SS and TGT on collagen-induced arthritis (CIA) were evaluated by measuring TNF-α and IL-6 levels. SS dosed at ZT18 was more effective in protecting against CIA than drug dosed at ZT6 (i.e., lower levels of key inflammatory factors at ZT18 than at ZT6). This was accompanied by higher systemic exposure levels of strychnine and brucine (two main putative active ingredients of SS) in ZT18-treated than in ZT6-treated CIA mice. TGT dosing at ZT2 showed a better efficacy against CIA as compared to herb doing at ZT14. Consistently, ZT2 dosing generated a higher exposure of triptolide (a main putative active ingredient of TGT) as compared to ZT14 dosing in CIA mice. Moreover, strychnine, brucine, and triptolide significantly inhibited the proliferation of fibroblast-like synoviocytes, and reduced the production of TNF-α and IL-6 and the mRNAs of TNF-α, IL-6, COX-2, and iNOS, suggesting that they possessed an anti-arthritis activity. In conclusion, SS and TGT display chronoefficacy against rheumatoid arthritis in mice, that is attributed to circadian pharmacokinetics of main active ingredients. Our findings have implications for improving treatment outcomes of SS and TGT via timed delivery.

13.
J Pharm Pharmacol ; 73(4): 535-544, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33793835

RESUMEN

OBJECTIVES: Identifying drugs with time-varying efficacy or toxicity, and understanding the underlying mechanisms would help to improve treatment efficacy and reduce adverse effects. In this study, we uncovered that the therapeutic effect of Fuzi (the lateral root of Aconitum carmichaelii Debeaux) depended on the dosing time in mice with adenine-induced chronic kidney disease (CKD). METHODS: The Fuzi efficacy was determined by biomarker measurements [i.e. plasma creatinine (CRE), blood urea nitrogen (BUN) and urinary N-acetyl-ß-D-glucosaminidase (NAG)], as well as inflammation, fibrosis and histological analyses. Circadian regulation of Fuzi pharmacokinetics and efficacy was evaluated using brain and muscle Arnt-like protein-1 (Bmal1)-deficient (Bmal1-/-) mice. KEY FINDINGS: The Fuzi efficacy was higher when the drug was dosed at ZT10 and was lower when the drug was dosed at other times (ZT2, ZT6, ZT14, ZT18 and ZT22) according to measurements of plasma CRE, BUN and urinary NAG. Consistently, ZT10 (5 PM) dosing showed a stronger protective effect on the kidney (i.e. less extensive tubular injury) as compared to ZT22 (5 AM) dosing. This was supported by lower levels of inflammatory and fibrotic factors (IL-1ß, IL-6, Tnf-α, Ccl2, Tgfb1 and Col1a1) at ZT10 than at ZT22. Pharmacokinetic analyses showed that the area under the curve (AUC) values (reflective of systemic exposure) and renal distribution of aconitine, hypaconitine and mesaconitine (three putative active constituents) for Fuzi dosing at ZT10 were significantly higher than those for herb dosing at ZT22, suggesting a role of circadian pharmacokinetics in Fuzi chronoefficacy. Drug efficacy studies confirmed that aconitine, hypaconitine and mesaconitine possessed a kidney-protecting effect. In addition, genetic knockout of Bmal1 in mice abolished the time-dependency of Fuzi pharmacokinetics and efficacy. This reinforced the existence of chronoefficacy for Fuzi and supported the role of circadian pharmacokinetics in Fuzi chronoefficacy. CONCLUSIONS: The efficacy of Fuzi against CKD depends on the dosing time in mice, which is associated with circadian pharmacokinetics of the three main active constituents (i.e. aconitine, hypaconitine and mesaconitine). These findings highlight the relevance of dosing time in the therapeutic outcomes of herbal medicines.


Asunto(s)
Cronofarmacocinética , Diterpenos , Medicamentos Herbarios Chinos , Insuficiencia Renal Crónica , Factores de Transcripción ARNTL/genética , Aconitina/análogos & derivados , Aconitina/análisis , Alcaloides/administración & dosificación , Alcaloides/farmacocinética , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Diterpenos/administración & dosificación , Diterpenos/farmacocinética , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacocinética , Pruebas de Función Renal/métodos , Ratones , Ratones Noqueados , Raíces de Plantas , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacocinética , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Resultado del Tratamiento
14.
J Pharm Pharmacol ; 73(3): 398-409, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33793874

RESUMEN

OBJECTIVES: We aimed to determine the circadian responses of mice to Semen Strychni and to investigate the role of pharmacokinetics in generating chronotoxicity. METHODS: Total extract of Semen Strychni was administered by oral gavage to wild-type (WT) and Bmal1-/- (a circadian clock-deficient model) mice at different circadian time points for toxicity (including survival) and pharmacokinetic characterization. Nephrotoxicity and neurotoxicity were evaluated by measuring plasma creatinine and creatine kinase BB (CK-BB), respectively. Drug metabolism and transport assays were performed using liver/intestine microsomes and everted gut sacs, respectively. KEY FINDINGS: Semen Strychni nephrotoxicity and neurotoxicity as well as animal survival displayed significant circadian rhythms (the highest level of toxicity was observed at ZT18 and the lowest level at ZT2 to ZT6). According to pharmacokinetic experiments, herb dosing at ZT18 generated higher plasma concentrations (and systemic exposure) of strychnine and brucine (two toxic constituents) compared with ZT6 dosing. This was accompanied by reduced formation of both dihydroxystrychnine and strychnine glucuronide (two strychnine metabolites) at ZT18. Bmal1 ablation sensitized mice to Semen Strychni-induced toxicity (with increased levels of plasma creatinine and CK-BB) and abolished the time dependency of toxicity. Metabolism of Semen Strychni (strychnine and brucine) in the liver and intestine microsomes of WT mice was more extensive at ZT6 than at ZT18. These time differences in hepatic and intestinal metabolism were lost in Bmal1-/- mice. Additionally, the intestinal efflux transport of Semen Strychni (strychnine and brucine) was more extensive at ZT6 than ZT18 in WT mice. However, the time-varying transport difference was abolished in Bmal1-/- mice. CONCLUSIONS: Circadian responses of mice to Semen Strychni are associated with time-varying efflux transport and metabolism regulated by the circadian clock (Bmal1). Our findings may have implications for optimizing phytotherapy with Semen Strychni via timed delivery.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano/fisiología , Extractos Vegetales/toxicidad , Strychnos nux-vomica/química , Animales , Transporte Biológico , Relojes Circadianos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas/metabolismo , Síndromes de Neurotoxicidad/etiología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacocinética , Estricnina/análogos & derivados , Estricnina/farmacocinética , Estricnina/toxicidad , Factores de Tiempo
15.
Theranostics ; 11(1): 426-444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391484

RESUMEN

Background: Understanding the molecular events and mechanisms underlying development and progression of nonalcoholic steatohepatitis is essential in an attempt to formulating a specific treatment. Here, we uncover Platr4 as an oscillating and NF-κB driven lncRNA that is critical to the pathological conditions in experimental steatohepatitis Methods: RNA-sequencing of liver samples was used to identify differentially expressed lncRNAs. RNA levels were analyzed by qPCR and FISH assays. Proteins were detected by immunoblotting and ELISA. Luciferase reporter, ChIP-sequencing and ChIP assays were used to investigate transcriptional gene regulation. Protein interactions were evaluated by Co-IP experiments. The protein-RNA interactions were studied using FISH, RNA pull-down and RNA immunoprecipitation analyses Results: Cyclic expression of Platr4 is generated by the core clock component Rev-erbα via two RevRE elements (i.e., -1354/-1345 and -462/-453 bp). NF-κB transcriptionally drives Platr4 through direct binding to two κB sites (i.e., -1066/-1056 and -526/-516 bp), potentially accounting for up-regulation of Platr4 in experimental steatohepatitis. Intriguingly, Platr4 serves as a circadian repressor of Nlrp3 inflammasome pathway by inhibiting NF-κB-dependent transcription of the inflammasome components Nlrp3 and Asc. Loss of Platr4 down-regulates Nlrp3 inflammasome activity in the liver, blunts its diurnal rhythm, and sensitizes mice to experimental steatohepatitis, whereas overexpression of Platr4 ameliorates the pathological conditions in an Nlrp3-dependent manner. Mechanistically, Platr4 prevents binding of the NF-κB/Rxrα complex to the κB sites via a physical interaction, thereby inhibiting the transactivation of Nlrp3 and Asc by NF-κB. Conclusions:Platr4 functions to inactivate Nlrp3 inflammasome via intercepting NF-κB signaling. This lncRNA might be an attractive target that can be modulated to ameliorate the pathological conditions of steatohepatitis.


Asunto(s)
Inflamasomas/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad del Hígado Graso no Alcohólico/genética , ARN Largo no Codificante/metabolismo , Animales , Ritmo Circadiano , Regulación de la Expresión Génica , Inmunoprecipitación , Hibridación Fluorescente in Situ , Inflamasomas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptor alfa X Retinoide/metabolismo
16.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33055157

RESUMEN

We uncover a cycling and NF-κB-driven lncRNA (named Lnc-UC) that epigenetically modifies transcription of circadian clock gene Rev-erbα, thereby linking circadian clock to colitis. Cycling expression of Lnc-UC is generated by the central clock protein Bmal1 via an E-box element. NF-κB activation in experimental colitis transcriptionally drives Lnc-UC through direct binding to two κB sites. Lnc-UC ablation disrupts colonic expressions of clock genes in mice; particularly, Rev-erbα is down-regulated and its diurnal rhythm is blunted. Consistently, Lnc-UC promotes expression of Rev-erbα (a known dual NF-κB/Nlrp3 repressor) to inactivate NF-κB signaling and Nlrp3 inflammasome in macrophages. Furthermore, Lnc-UC ablation sensitizes mice to experimental colitis and abolishes the diurnal rhythmicity in disease severity. Mechanistically, Lnc-UC physically interacts with Cbx1 protein to reduce its gene silencing activity via H3K9me3, thereby enhancing Rev-erbα transcription and expression. In addition, we identify a human Lnc-UC that has potential to promote Rev-erbα expression and restrain inflammations.

17.
Biochem Biophys Res Commun ; 529(4): 916-921, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819599

RESUMEN

Hepatic ischemia-reperfusion (I/R) injury is a complex pathophysiological process that often times occurs in liver transplantation, hepatectomy, and ischemic shock. Aberrant activation of inflammatory responses has been implicated in hepatic I/R injury. In this study, we aimed to investigate the role of circadian clock gene Rev-erbα (a well-known regulator of inflammation) in hepatic I/R injury. We first showed that Rev-erbα ablation sensitized mice to hepatic I/R injury as evidenced by higher levels of plasma alanine aminotransferase and aspartate aminotransferase, an increased histological score, as well as enhanced hepatic myeloperoxidase activity in Rev-erbα-/- mice. More severe hepatic I/R injury in Rev-erbα-/- mice was accompanied by higher expression of pro-inflammatory cytokines, exacerbated activation of Nlrp3 inflammasome, and more extensive infiltration of inflammatory cells. Moreover, pharmacological activation of Rev-erbα by SR9009 significantly alleviated the hepatic damage and inflammatory responses. In addition, I/R operation started at ZT18 (corresponding to low Rev-erbα expression) caused more severe liver damage and inflammatory responses in wild-type mice as compared to operation started at ZT6 (corresponding to high Rev-erbα expression), supporting a protective effect of Rev-erbα on hepatic I/R injury. Collectively, Rev-erbα protects hepatic I/R injury probably via repression of inflammatory responses, and targeting Rev-erbα may be a promising approach for management of hepatic I/R injury.


Asunto(s)
Relojes Circadianos/inmunología , Hígado/metabolismo , Macrófagos/inmunología , Neutrófilos/inmunología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Daño por Reperfusión/metabolismo , Alanina Transaminasa/genética , Alanina Transaminasa/inmunología , Animales , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/inmunología , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Hígado/inmunología , Hígado/patología , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/inmunología , Peroxidasa/genética , Peroxidasa/inmunología , Pirrolidinas/farmacología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Tiofenos/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
18.
Theranostics ; 10(9): 4168-4182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226546

RESUMEN

REV-ERBα (NR1D1) is a circadian clock component that functions as a transcriptional repressor. Due to its role in direct modulation of metabolic genes, REV-ERBα is regarded as an integrator of cell metabolism with circadian clock. Accordingly, REV-ERBα is first proposed as a drug target for treating sleep disorders and metabolic syndromes (e.g., dyslipidaemia, hyperglycaemia and obesity). Recent years of studies uncover a rather broad role of REV-ERBα in pathological conditions including local inflammatory diseases, heart failure and cancers. Moreover, REV-ERBα is involved in regulation of circadian drug metabolism that has implications in chronopharmacology. In the meantime, recent years have witnessed discovery of an array of new REV-ERBα ligands most of which have pharmacological activities in vivo. In this article, we review the regulatory role of REV-ERBα in various types of diseases and discuss the underlying mechanisms. We also describe the newly discovered ligands and the old ones together with their targeting potential. Despite well-established pharmacological effects of REV-ERBα ligands in animals (preclinical studies), no progress has been made regarding their translation to clinical trials. This implies certain challenges associated with drug development of REV-ERBα ligands. In particular, we discuss the potential challenges related to drug safety (or adverse effects) and bioavailability. For new drug development, it is advocated that REV-ERBα should be targeted to treat local diseases and a targeting drug should be locally distributed, avoiding the adverse effects on other tissues.


Asunto(s)
Relojes Circadianos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Animales , Desarrollo de Medicamentos , Humanos , Ligandos , Ratones , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/fisiología , Transducción de Señal
19.
Phytomedicine ; 67: 153161, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31911401

RESUMEN

BACKGROUND: Therapeutic applications of Fuzi (lateral root of Aconitum carmichaeli Debx) are seriously concerned with its toxic effects. Strategies and approaches to reducing toxicity are of great interest. PURPOSE: We aimed to characterize the diurnal rhythm of Fuzi toxicity, and to determine the role of metabolism and pharmacokinetics in generating toxicity rhythmicity. METHODS: Toxicity was determined based on assessment of heart injury and animal survival after dosing mice with Fuzi decoction at different circadian time points. Circadian clock control of pharmacokinetics and toxicity was investigated using Bmal1-deficient (Bmal1-/-) mice. RESULTS: Fuzi exhibited a diurnal rhythmicity in cardiotoxicity (reflected by plasma CK-MB and LDH levels). The highest level of toxicity was observed at ZT10 (5 PM), while the lowest level of toxicity occurred at ZT22 (5 AM). Also, a higher mortality rate was observed at ZT10 and lower mortality rates at other times of the day. ZT10 dosing of Fuzi generated higher systemic exposures of three toxic alkaloid ingredients aconitine (AC), hypaconitine (HA) and mesaconitine (MA) compared to ZT22. This was accompanied by reduced the formation of the metabolites (N-deethyl-AC, didemethyl-HA and 2­hydroxyl­MA) at ZT10. Bmal1 ablation resulted in an increased level of Fuzi toxicity at ZT22, while having no influences when drug was dosed at ZT10. As a consequence, circadian time-dependent toxicity of Fuzi was lost in Bmal1-deficient mice. In addition, Bmal1 ablation increased the plasma concentrations of AC, HA and MA in mice after oral gavage of Fuzi, and reduced formation of their metabolites (N-deethyl-AC, didemethyl-HA and 2­hydroxyl­MA). Moreover, Fuzi metabolism in wild-type liver microsomes was more extensive at ZT22 than at ZT10. Bmal1 ablation abrogated circadian time-dependency of hepatic Fuzi metabolism. CONCLUSIONS: Fuzi chronotoxicity in mice was attributed to time-varying hepatic metabolism and systemic exposure regulated by circadian clock. The findings may have implications in reducing Fuzi toxicity with a chronotherapeutic approach.


Asunto(s)
Aconitum/química , Relojes Circadianos/efectos de los fármacos , Extractos Vegetales/farmacocinética , Extractos Vegetales/toxicidad , Factores de Transcripción ARNTL/genética , Aconitina/análogos & derivados , Aconitina/farmacocinética , Animales , Cromatografía Líquida de Alta Presión/métodos , Relojes Circadianos/fisiología , Diterpenos , Medicamentos Herbarios Chinos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microsomas Hepáticos/efectos de los fármacos , Pruebas de Toxicidad/métodos
20.
Biochem Pharmacol ; 172: 113773, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866303

RESUMEN

Berberine, initially isolated from Rhizoma Coptidis (Huanglian in Chinese), is a drug used to treat gastrointestinal disorders such as colitis. Here we uncovered a time-varying berberine effect on chronic colitis in mice, and investigated a potential role of the clock protein Rev-erbα in this timing effect. Berberine activity toward Rev-erbα was determined by luciferase reporter, Gal4-cotransfection assay and target gene expression analyses. Chronic colitis was induced by feeding mice with dextran sulfate sodium in drinking water. Colitis severity and pharmacological effects of berberine were assessed by measuring myeloperoxidase and malondialdehyde activities as well as the levels of inflammatory factors (IL-1ß, IL-6, IL-18 and Ccl2). Berberine significantly inhibited Bmal1 (-2000/+100 bp)- and Nlrp3 (-1310/+100 bp)-Luc reporter activities, and dose-dependently decreased cellular expressions of both Bmal1 and Nlrp3. Also, it enhanced the transcriptional repressor activity of Rev-erbα in the Gal4 chimeric assay. These data indicated berberine as a Rev-erbα agonist. As expected, berberine attenuated inflammatory responses in BMDMs (bone marrow-derived macrophages) and in colitis mice. However, the anti-inflammatory effects of berberine were lost in BMDMs derived from Rev-erbα-deficient mice. Furthermore, chronic colitis displayed a diurnal rhythmicity in disease severity and its diurnal pattern was in an opposite phase to that of Rev-erbα expression, supporting a direct control of colitis by Rev-erbα. Moreover, berberine effects on chronic colitis were dosing time-dependent. ZT10 dosing generated a better treatment outcome compared to ZT2. This was because colitis was less severe and Rev-erbα expression was much higher at ZT10 than at ZT2. In conclusion, circadian pharmacological effects of berberine on chronic colitis were mainly contributed by diurnal rhythms of both disease severity and Rev-erbα (as a drug target). The findings may have implications for chronotherapeutic practice on colitis or related diseases.


Asunto(s)
Berberina/farmacología , Ritmo Circadiano/efectos de los fármacos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Antiinflamatorios/farmacología , Berberina/química , Células de la Médula Ósea , Enfermedad Crónica , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...