Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 4474-4493, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35881599

RESUMEN

Neural networks contain considerable redundant computation, which drags down the inference efficiency and hinders the deployment on resource-limited devices. In this paper, we study the sparsity in convolutional neural networks and propose a generic sparse mask mechanism to improve the inference efficiency of networks. Specifically, sparse masks are learned in both data and channel dimensions to dynamically localize and skip redundant computation at a fine-grained level. Based on our sparse mask mechanism, we develop SMPointSeg, SMSR, and SMStereo for point cloud semantic segmentation, single image super-resolution, and stereo matching tasks, respectively. It is demonstrated that our sparse masks are well compatible to different model components and network architectures to accurately localize redundant computation, with computational cost being significantly reduced for practical speedup. Extensive experiments show that our SMPointSeg, SMSR, and SMStereo achieve state-of-the-art performance on benchmark datasets in terms of both accuracy and efficiency.

2.
IEEE Trans Image Process ; 32: 1745-1758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35994532

RESUMEN

Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds. With the advances of deep learning, CNN-based methods have yielded promising results in generic object detection due to their powerful modeling capability. However, existing CNN-based methods cannot be directly applied to infrared small targets since pooling layers in their networks could lead to the loss of targets in deep layers. To handle this problem, we propose a dense nested attention network (DNA-Net) in this paper. Specifically, we design a dense nested interactive module (DNIM) to achieve progressive interaction among high-level and low-level features. With the repetitive interaction in DNIM, the information of infrared small targets in deep layers can be maintained. Based on DNIM, we further propose a cascaded channel and spatial attention module (CSAM) to adaptively enhance multi-level features. With our DNA-Net, contextual information of small targets can be well incorporated and fully exploited by repetitive fusion and enhancement. Moreover, we develop an infrared small target dataset (namely, NUDT-SIRST) and propose a set of evaluation metrics to conduct comprehensive performance evaluation. Experiments on both public and our self-developed datasets demonstrate the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of probability of detection ( Pd ), false-alarm rate ( Fa ), and intersection of union ( IoU ).

3.
IEEE Trans Pattern Anal Mach Intell ; 44(4): 2108-2125, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32976095

RESUMEN

Stereo image pairs encode 3D scene cues into stereo correspondences between the left and right images. To exploit 3D cues within stereo images, recent CNN based methods commonly use cost volume techniques to capture stereo correspondence over large disparities. However, since disparities can vary significantly for stereo cameras with different baselines, focal lengths and resolutions, the fixed maximum disparity used in cost volume techniques hinders them to handle different stereo image pairs with large disparity variations. In this paper, we propose a generic parallax-attention mechanism (PAM) to capture stereo correspondence regardless of disparity variations. Our PAM integrates epipolar constraints with attention mechanism to calculate feature similarities along the epipolar line to capture stereo correspondence. Based on our PAM, we propose a parallax-attention stereo matching network (PASMnet) and a parallax-attention stereo image super-resolution network (PASSRnet) for stereo matching and stereo image super-resolution tasks. Moreover, we introduce a new and large-scale dataset named Flickr1024 for stereo image super-resolution. Experimental results show that our PAM is generic and can effectively learn stereo correspondence under large disparity variations in an unsupervised manner. Comparative results show that our PASMnet and PASSRnet achieve the state-of-the-art performance.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31995491

RESUMEN

Video super-resolution (SR) aims at generating a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The key challenge for video SR lies in the effective exploitation of temporal dependency between consecutive frames. Existing deep learning based methods commonly estimate optical flows between LR frames to provide temporal dependency. However, the resolution conflict between LR optical flows and HR outputs hinders the recovery of fine details. In this paper, we propose an end-to-end video SR network to super-resolve both optical flows and images. Optical flow SR from LR frames provides accurate temporal dependency and ultimately improves video SR performance. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed using HR optical flows to encode temporal dependency. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate SR results. Extensive experiments have been conducted to demonstrate the effectiveness of HR optical flows for SR performance improvement. Comparative results on the Vid4 and DAVIS-10 datasets show that our network achieves the state-of-the-art performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...