Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
Front Pediatr ; 12: 1409046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774298

RESUMEN

Purpose: Develop and validate a nomogram for predicting intestinal resection in pediatric intussusception suspecting intestinal necrosis. Patients & methods: Children with intussusception were retrospectively enrolled after a failed air-enema reduction in the outpatient setting and divided into two groups: the intestinal resection group and the non-intestinal resection group. The enrolled cases were randomly selected for training and validation sets with a split ratio of 3:1. A nomogram for predicting the risk of intestinal resection was visualized using logistic regression analysis with calibration curve, C-index, and decision curve analysis to evaluate the model. Results: A total of 547 cases were included in the final analysis, of which 414 had non-intestinal necrosis and 133 had intestinal necrosis and underwent intestinal resection. The training set consisted of 411 patients and the validation cohort included 136 patients. Through forward stepwise regression, four variables (duration of symptoms, C-reaction protein, white blood cells, ascites) were selected for inclusion in the nomogram with a concordance index 0.871 (95% confidence interval: 0.834-0.908). Conclusion: We developed a nomogram for predicting intestinal resection in children with intussusception suspecting intestinal necrosis after a failed air-enema based on multivariate regression. This nomogram could be directly applied to facilitate predicting intestinal resection in pediatric intussusception suspecting necrosis.

2.
J Affect Disord ; 359: 117-124, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762035

RESUMEN

BACKGROUND: Pharmacotherapy is one of the primary treatment modalities for depression. However, there is considerable variability in the individual response to antidepressant medications. Personalized medicine guided by pharmacogenomic testing may hold promise in addressing this issue. METHODS: In this study, 665 depressive patients were randomly enrolled into two groups: the pharmacogenomic testing group (n = 333) and the control group (n = 332). In the testing group, participants underwent pharmacogenomic testing, and clinicians customized the treatment plan with the result, while the control group relied solely on clinicians' experience. The primary outcomes were the proportion of remission and response, assessed with Hamilton Depression Rating Scale (HDRS). The secondary outcomes included changes in HDRS scores over time and frequency of adverse drug reactions by the participants. RESULTS: At week 8, the pharmacogenomic testing group showed significantly higher remission rates (24.0 % v.s. 15.1 %; RR = 1.117; P = 0.007) and response rates (39.3 % v.s. 25.7 %; RR = 1.225; P < 0.001) compared to the control group. By week 12, the pharmacogenomic testing group continued to demonstrate significant advantages in remission (31.0 % v.s. 20.0 %; RR = 1.159; P = 0.003) and response (48.7 % v.s. 37.3 %; RR = 1.224; P = 0.006). Additionally, adverse drug reactions were less frequent in the pharmacogenomic testing group. LIMITATIONS: This study is not blind to clinicians and it's a single-center study. CONCLUSIONS: Pharmacogenomic testing-guided drug therapy can provide greater assistance in the treatment of depression.

3.
Psychol Res Behav Manag ; 17: 1999-2009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766316

RESUMEN

Background: Stigma is assumed to lead to negative illness identity in one who got chronic illness, and there is a lack of understanding regarding the underly mechanisms. However, no research has examined the extent to which stigma was associated with illness identity in people with IBD. Therefore, we investigated the relationship between stigma and illness identity, specifically to examine whether resilience mediated or moderated the relationship. Methods: A cross-sectional study was performed among patients diagnosed with inflammatory bowel disease from three tertiary hospitals in Jiangsu Province, China. Measurement instruments included the Stigma Scale for Chronic Illness (SSCI), the Resilience Scale for Patients with Inflammatory Bowel Disease (RS-IBD), and the Illness Identity questionnaire (IIQ). Mediation and moderated mediation analyses were conducted. Results: A total of 322 patients with IBD were involved in the current study. We observed that there was a strong connection between stigma and rejection and engulfment. Moreover, resilience played a partial or complete mediating role in stigma and engulfment, acceptance and enrichment, and resilience moderates the relationship between stigma and rejection. Conclusion: The current study examined whether resilience mediated or moderated the relationship between stigma and illness identity. These finding add to the theoretical basis of how stigma influences illness identity and help guide the resilience into engulfment reduction programs for IBD.

4.
Obes Rev ; 25(6): e13740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571458

RESUMEN

Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.


Asunto(s)
Tejido Adiposo , Exosomas , Enfermedades Metabólicas , ARN no Traducido , Humanos , Exosomas/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Tejido Adiposo/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/fisiología , Animales
5.
Environ Int ; 186: 108633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603814

RESUMEN

In the severe pollution area of nanoplastics (NPs) and cadmium ions (Cd2+), the joint effects of their high environmental concentrations on primary producers may differ from those of low environmental doses. Thus, we investigated the physiological changes, cell morphology, molecular dynamic simulation, phenotypic interactions, and metabolomics responses of C. pyrenoidosa to high environmental concentrations of NPs and Cd2+ after 12-d acclimation. After 12-d cultivation, mono-NPs and mono-Cd2+ reduced cell density and triggered antioxidant enzymes, extracellular polymeric substances (EPS) production, and cell aggregation to defend their unfavorable effects. Based on the molecular dynamic simulation, the chlorine atoms of the NPs and Cd2+ had charge attraction with the nitrogen and phosphorus atoms in the choline and phosphate groups in the cell membrane, thereby NPs and Cd2+ could adsorb on the cells to destroy them. In the joint exposure, NPs dominated the variations of ultrastructure and metabolomics and alleviated the toxicity of NPs and Cd2+. Due to its high environmental concentration, more NPs could compete with the microalgae for Cd2+ and thicken cell walls, diminishing the Cd2+ content and antioxidant enzymes of microalgae. NPs addition also decreased the EPS content, while the bound EPS with -CN bond was kept to detoxicate Cd2+. Metabolomics results showed that the NPs downregulated nucleotide, arachidonic acid, and tryptophan metabolisms, while the Cd2+ showed an opposite trend. Compared with their respective exposures, metabolomics results found the changes in metabolic molecules, suggesting the NPs_Cd2+ toxicity was mitigated by balancing nucleotide, arachidonic acid, tryptophan, and arginine and proline metabolisms. Consequently, this study provided new insights that simultaneous exposure to high environmental concentrations of NPs and Cd2+ mitigated microalgae cellular toxicity, which may change their fates and biogeochemical cycles in aquatic systems.


Asunto(s)
Cadmio , Metabolómica , Microalgas , Cadmio/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Simulación de Dinámica Molecular , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad
6.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610346

RESUMEN

The elevator door system plays a crucial role in ensuring elevator safety. Fault prediction is an invaluable tool for accident prevention. By analyzing the sound signals generated during operation, such as component wear and tear, the fault of the system can be accurately determined. This study proposes a GNN-LSTM-BDANN deep learning model to account for variations in elevator operating environments and sound signal acquisition methods. The proposed model utilizes the historical sound data from other elevators to predict the remaining useful life (RUL) of the target elevator door system. Firstly, the opening and closing sounds of other elevators is collected, followed by the extraction of relevant sound signal characteristics including A-weighted sound pressure level, loudness, sharpness, and roughness. These features are then transformed into graph data with geometric structure representation. Subsequently, the Graph Neural Networks (GNN) and long short-term memory networks (LSTM) are employed to extract deeper features from the data. Finally, transfer learning based on the improved Bhattacharyya Distance domain adversarial neural network (BDANN) is utilized to transfer knowledge learned from historical sound data of other elevators to predict RUL for the target elevator door system effectively. Experimental results demonstrate that the proposed method can successfully predict potential failure timeframes for different elevator door systems.

7.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546629

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Asunto(s)
Corazón , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/genética , Mitocondrias , Hipertrofia , Complejo I de Transporte de Electrón/genética , Nucleótidos , Hidrolasas , Proteínas Mitocondriales/genética
8.
Cell Commun Signal ; 22(1): 177, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475811

RESUMEN

BACKGROUND: The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE: To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS: Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS: Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION: Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.


Asunto(s)
Compuestos Heterocíclicos , Mieloma Múltiple , Humanos , Movilización de Célula Madre Hematopoyética , Quimiocinas , Transducción de Señal , Biomarcadores
9.
Sci Total Environ ; 926: 171878, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38537832

RESUMEN

Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Microplásticos , Plásticos , Ecosistema , Carbono , Metales Pesados/análisis , Plantas/metabolismo , Contaminantes del Suelo/análisis
10.
Opt Express ; 32(3): 3251-3265, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297551

RESUMEN

This study investigates the utilization of an in-fiber interferometer embedded in polydimethylsiloxane (PDMS) to develop a highly sensitive tactile sensor. The tapered mode-field mismatch structure is more conducive to stimulating strong high order modes to promote the sensitivity of the sensor. Experimental investigations are conducted to study the sensing performance of the sensor, resulting in a sensitivity of 23.636 nm/N and a detection limit of 0.746 mN. The experiments demonstrate that employing fast Fourier transform (FFT) and inverse FFT (IFFT) methods to filter weak high order modes significantly improves the repeatability of the sensor, resulting in a repeatability error of less than 1%.

11.
Chemphyschem ; 25(6): e202300451, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190838

RESUMEN

Topological semimetals have gradually emerged as excellent catalysts owing to their robust surface states. Recently, Mn3 X (X=Sn, Ge, and Ir), which exhibits noncollinear antiferromagnetic phases at room temperature, has been found to possess energy bands that are characteristic of Weyl semimetals. In this study, we demonstrate that the perfect Mn3 Sn (001) surface is favorable for N2 reduction with a low onset potential. According to a theoretical criterion, the catalytic performance of the (001) surface of Mn3 Sn is higher than that of the (001) surfaces of the homologues Cr3 Sn and Mo3 Sn. The construction and catalytic performance of other types of Mn3 Sn surfaces are also investigated. Our findings highlight the feasibility of applying topological Weyl semimetals as electrocatalysts for N2 reduction.

12.
Mol Nutr Food Res ; 68(4): e2300735, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38227364

RESUMEN

SCOPE: Breast milk has the potential to prevent childhood obesity by providing probiotics, but there are still instances of obesity in breastfed children. METHODS AND RESULTS: This study investigates the difference in intestinal flora structure between breastfed children with obesity (OB-BF) and normal-weight breastfed children (N-BF). Building upon this foundation, it employs both cell and mouse models to identify an antiobesity strain within the fecal matter of N-BF children and explore its underlying mechanisms. The results reveal a reduction in lactobacillus levels within the intestinal flora of OB-BF children compared to N-BF children. Consequently, Lactobacillus plantarum H-72 (H-72) is identified as a promising candidate due to its capacity to stimulate glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine cells (ECCs). In vivo, H-72 effectively increases serum GLP-1 concentration, reduces food intake, regulates the expression of genes related to energy metabolism (SCD-1, FAS, UCP-1, and UCP-3), and regulates gut microbiota structure in mice. Moreover, the lipoteichoic acid of H-72 activates toll-like receptor 4 to enhanced GLP-1 secretion in STC-1 cells. CONCLUSIONS: L. plantarum H-72 is screened out for its potential antiobesity effect, which presents a potential and promising avenue for future interventions aimed at preventing pediatric obesity in breastfed children.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Infantil , Probióticos , Humanos , Niño , Animales , Ratones , Femenino , Lactancia Materna , Intestinos , Péptido 1 Similar al Glucagón/metabolismo , Probióticos/farmacología
13.
BMC Cancer ; 24(1): 24, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166697

RESUMEN

BACKGROUND: The evidence about the effects of trace elements on overall survival(OS) of patients with esophageal squamous cell carcinoma(ESCC) is limited. This study aims to evaluate mixed effects of plasma trace elements on OS of ESCC. METHODS: This prospective cohort analysis included 497 ESCC patients with a median follow-up of 52.3 months. The concentrations of 17 trace elements were measured. We fitted Cox's proportional hazards regression, factor analysis and Bayesian kernel machine regression (BKMR) models to estimate the association between trace elements and OS. RESULTS: Our analysis found that in the single-element model, Co, Ni, and Cd were associated with an increased risk of death, while Ga, Rb, and Ba were associated with a decreased risk. Cd had the strongest risk effect among all elements. As many elements were found to be mutually correlated, we conducted a factor analysis to identify common factors and investigate their associations with survival time. The factor analysis indicated that the factor with high factor loadings in Ga, Ba and B was linked to a decreased risk of death, while the factor with high factor loadings in Co, Ti, Cd and Pb was associated with a borderline significantly increased risk. Using BKMR analysis to disentangle the interaction between elements in significant factors, we discovered that Ga interacted with Ba and both elements had U-shaped effects with OS. Cd, on the other hand, had no interaction with other elements and independently increased the risk of death. CONCLUSIONS: Our analysis revealed that Ga, Ba and Cd were associated with ESCC outcome, with Ga and Ba demonstrating an interaction. These findings provide new insights into the impact of trace elements on the survival of patients with ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Oligoelementos , Humanos , Estudios Prospectivos , Teorema de Bayes , Cadmio , Estudios de Cohortes
14.
Small ; 20(10): e2307138, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875766

RESUMEN

Covalent organic frameworks (COFs) offer a desirable platform to explore multichoromophoric arrays for photocatalytic conversion. Symmetric arrangement of choromophoric modules over π-extended frameworks enhances exciton delocalization while impairing excitation density and accordingly photochemical reactivity. Herein, a photoisomerization-driven strategy is proposed to break the excited-state symmetry of ketoenamine-linked COFs with multichoromophoric arrays. Incorporating electron-withdrawing benzothiadiazole facilitates the ultrafast excited-state intramolecular proton transfer (ESIPT) from enamine to keto within 140 fs, resulting in partially enolized COF isomers. The hybrid linkages containing imine and enamine bonds at the node of framework alter the symmetry of electronic structure and enforce the photoinduced charge separation. Increasing the imine-to-enamine ratio further promotes the electron transferred number in a long range, thereby affording the optimum photocatalytic hydrogen evolution rate. This work put forward an ESIPT-induced photoisomerization to build a symmetry-breaking COF with weakened exciton effect and enhanced photochemical reactivity.

15.
Heart Lung ; 63: 128-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37890310

RESUMEN

BACKGROUND: Pulmonary complications often arise from ineffective coughing, yet limited research exists on the determinants of cough strength in patients undergoing cardiac surgery. OBJECTIVES: The aim is to explore preoperative cough strength in patients scheduled for cardiac surgery and identify factors associated with diminished cough strength. METHODS: A cross-sectional study was conducted on 330 adult patients admitted for cardiac surgery at a tertiary Grade A hospital in Jiangsu Province, China between August 2022 and February 2023. Cough strength was assessed using cough peak flow, with values below 270 L/min classified as reduced cough strength. The study adhered to the STROBE guidelines. RESULTS: The study comprised 228 males (69.1 %) and 102 females (30.9 %), aged 23 to 81 years. Types of cardiac surgery included coronary artery bypass surgery, heart valvuloplasty, or heart valve replacement among others. The mean preoperative cough peak flow was 250.38 ± 119.71 L/min, with 60.3 % of patients exhibiting reduced cough strength. A multiple linear regression analysis identified gender, age, exercise regimen, pulmonary arterial hypertension, left ventricular ejection fraction, inspiratory capacity, and proficiency in coughing techniques as primary factors affecting cough strength. CONCLUSIONS: Our findings indicate an association between diminished cough strength and factors such as female gender, advanced age, absence of systematic exercise, presence of pulmonary arterial hypertension, lower left ventricular ejection fraction, reduced inspiratory capacity, and inadequate mastery of coughing techniques. Healthcare staff should prioritize regular assessment of cough strength and manage the pertinent factors to enhance preoperative coughing ability.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Hipertensión Arterial Pulmonar , Masculino , Adulto , Humanos , Femenino , Estudios Transversales , Volumen Sistólico , Función Ventricular Izquierda , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Procedimientos Quirúrgicos Cardíacos/métodos , Tos/etiología
16.
Macromol Biosci ; 24(4): e2300362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38150293

RESUMEN

RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.


Asunto(s)
Portadores de Fármacos , Nanopartículas , ARN Interferente Pequeño/química , Interferencia de ARN , Portadores de Fármacos/química , Terapia Genética , Polímeros/química , Lípidos/química , Nanopartículas/química
17.
Environ Res ; 245: 118054, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157968

RESUMEN

Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio/toxicidad , Cadmio/análisis , Suelo/química , Rizosfera , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis , Productos Agrícolas/metabolismo , Metales Pesados/análisis
18.
JACS Au ; 3(12): 3391-3399, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38155651

RESUMEN

Photoexcitation of keto-enamine allows intramolecular proton transfer from C-NH to C=O, leading to tautomerization, while the photogenerated isomers are excluded from the study of photocatalytic applications. Herein, we demonstrate the photoisomerization of keto-enamine linkages on covalent organic frameworks (COFs) induced by excited-state intramolecular proton transfer (ESIPT). Partial enolization generates partially enolized photoisomers with a mixture of keto (C=O) and enol (OH) forms, conferring extended π-conjugation with an increase in electron density. The spatially separated D-A configuration is thus rebuilt with the enol-imine-linked branch as a donor and the keto-enamine-linked branch as an acceptor, and in turn, the photoinduced charges transfer between the two adjacent branches with a long lifetime. We further prove that the partially enolized photoisomer is a key transition instead of the keto-enamine form as an excited-state model to understand the photocatalytic behaviors. Therefore, ESIPT-induced photoisomerization must be considered for rationally designing keto-enamine-linked COFs with enhanced photocatalytic activity. Also, our study points toward the importance of controlling excited-state structures for long-lived separated charges, which is of particular interest for optoelectronic applications.

19.
Clin Exp Dermatol ; 49(1): 58-60, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37934855

RESUMEN

We describe a case of a patient with erythroplasia of Queyrat located on the whole glans and end of the prepuce that was successfully treated with three courses of photodynamic therapy after the completion of circumcision and dermabrasion. Skin lesions disappeared after receiving this combination of treatments and have not recurred during the past 6 months of follow-up.


Asunto(s)
Eritroplasia , Neoplasias del Pene , Fotoquimioterapia , Masculino , Humanos , Eritroplasia/tratamiento farmacológico , Eritroplasia/patología , Eritroplasia/cirugía , Neoplasias del Pene/patología , Dermabrasión , Recurrencia Local de Neoplasia
20.
Environ Int ; 181: 108296, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37924603

RESUMEN

Irregularly shaped microplastics (MPs) released from infant feeding bottles (PP-IFBs) may exhibit increased cytotoxicity, in contrast to the commonly studied spherical MPs. This study presents an initial analysis of the thermal-oxidative aging process of plastic shedding from feeding bottles, and investigates the inflammatory response induced by these atypical MPs in human intestinal cells (Caco-2). The PP-IFBs' surface displayed non-uniform white patches and increased roughness, revealing substantial structural alteration and shedding, especially during actions such as shaking, boiling water disinfection, and microwave heating. FT-IR and 2D-COS analyses revealed that oxygen targeted the C-H and C-C bonds of polypropylene molecular chain, producing RO· and ·OH, thereby hastening polypropylene degradation. When human intestinal cells were exposed to MPs from PP-IFBs, oxidative stress was triggered, resulting in lowered glutathione levels, augmented reactive oxygen species (ROS), and heightened lipid peroxidation. Elevated levels of pro-inflammatory cytokines (IL-6 and TNFα) signified an active inflammatory process. The inflammatory response was notably more intense when exposed to MPs released through boiling water disinfection and microwave heating treatments, primarily due to the larger quantity of MPs released and their higher proportion of smaller particles. Furthermore, the NLRP3 inflammasome was identified as critical in initiating this inflammatory chain reaction due to the mitochondrial ROS surge caused by MPs exposure. This was further validated by inhibitor studies, emphasizing the role of the ROS/NLRP3/Caspase-1/IL-1ß signaling pathway in in promoting intestinal inflammation. Therefore, swift actions are recommended to protect infants against the potential health effects of MPs exposure.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Plásticos , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caspasa 1/metabolismo , Microplásticos , Células CACO-2 , Polipropilenos , Espectroscopía Infrarroja por Transformada de Fourier , Inflamación/metabolismo , Transducción de Señal , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...