Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446015

RESUMEN

Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.


Asunto(s)
Fusarium , Transcriptoma , Metabolismo Secundario/genética , Nitrógeno/metabolismo , Espectrometría de Masas en Tándem , Giberelinas/metabolismo , Regulación Fúngica de la Expresión Génica
2.
Chemosphere ; 332: 138893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37164197

RESUMEN

Dissimilatory soil arsenic (As) reduction and release are driven by microbial extracellular electron transfer (EET), while reverse EET mediates soil methane (CH4) emission. Nevertheless, the detailed biogeochemical mechanisms underlying the tight links between soil As migration and methanogenesis are unclear. This study used a bioelectrochemical-based system (BES) to explore the potential effects of zero-valent iron (ZVI) addition on "As migration-CH4 emission" interactions from chemical and microbiological perspectives. Voltage and ZVI amendment experiments showed that dissolved As was efficiently immobilized with increased CH4 production in the soil BES, As release and CH4 production exhibited a high negative exponential correlation, and reductive As dissolution could be entirely inhibited in the methanogenic stage. Gene quantification and bacterial community analysis showed that in contrast to applied voltage, ZVI changed the spatial heterogeneity of the distribution of electroactive microorganisms in the BES, significantly decreasing the relative abundance of arrA and dissimilatory As/Fe-reducing bacteria (e.g., Geobacter) while increasing the abundance of aceticlastic methanogens (Methanosaeta), which then dominated CH4 production and As immobilization after ZVI incorporation. In addition to biogeochemical activities, coprecipitation with ferric (iron) contributed 77-93% dissolved As removal under ZVI addition. This study will enhance our knowledge of the processes and microorganisms controlling soil As migration and CH4 emission.


Asunto(s)
Arsénico , Hierro , Hierro/metabolismo , Suelo , Bacterias/genética , Bacterias/metabolismo , Metano/metabolismo
3.
Plant Dis ; 2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36774581

RESUMEN

Water lettuce (Pistia stratiotes L.), is one of the emerging invasive weeds for inland water bodies in Asia and become a major problem for local water ecosystem. Biocontrol of water lettuce by mycobiota is being considered as a promising and sustainable method (Kongjornrak et al. 2019). During July 2021, a leaf blight of water lettuce was observed within about 1.5 ha in Shenxi stream (N25°66', E119°05') in Putian, Fujian, China. The disease severity was about 100% with 80% incidence, early symptoms appeared as small irregularly yellow or brown blight, severely infected leaves turned to be rot, then death and sink. Small pieces (5 × 5 mm) of symptomatic leaves were excised and surface disinfected with 75% ethanol and 0.1% HgCl2 solution, air dried and plated on potato dextrose agar (PDA). 3~5 days after incubation at 28°C, six fungal pure cultures showing similar morphology were obtained from the infected leaves. On PDA, colonies were flat, aerial mycelium grew sparsely, most of it grew inside the agar medium, it reverses white to grey to black with age. Hyphae were branched, septate, smooth and hyaline. Conidiophores mostly reduced to conidiogenous cells and setae were not observed. Conidiogenous cells were monoblastic, discrete and solitary, at first hyaline, subspherical, then turning to pale brown, ampulliform, 4.5-10 × 3.5-6 µm in size. Conidia were solitary, globose or ellipsoidal, black, smooth, some of it formed directly from the mycelia, aseptate, 8-12 µm diam (n=10). Genomic DNA was extracted from one of the representative isolate Z1. ITS1/ITS4 (Mills et al. 1992), Bt-2a/Bt-2b (Glass and Donaldson 1995) and EF1-728F/EF-2 (O'Donnell et al. 1998) primer pairs were used to amplify the isolate's internal transcribed spacer (ITS), the Beta-tubulin fragment (TUB) and the partial translation elongation factor (TEF1), respectively. The isolate's sequences were deposited in the GenBank with accession numbers of OM279539 (ITS), OM296034 (TUB) and OM296035 (TEF1). Phylogenetic analysis using maximum likelihood based on the ITS-TUB-TEF1 concatenated sequences from Nigrospora species revealed that isolate Z1 is closely clustered with N. osmanthi strain LC4487. The fungus was identified as N. osmanthi based on the morphological characteristics and molecular analyses (Hao et al. 2020; Wang et al. 2017). Pathogenicity test were performed using twenty inoculated and control plants, respectively. Conidial suspensions (107 CFU/ml) of Z1 isolate were spray-inoculated on the leaves of healthy water lettuce seedlings, while sterile distilled water was used as control. Inoculated and control plants were kept in the differential 50-liter plastic tanks and maintained in a greenhouse at room temperature (19 to 24°C) for one month. Symptoms appeared 7 days post inoculation, which was similar to what occurs in the field. No symptoms occurred on controls. Pathogen was reisolated and confirmed by morphology and molecular analysis. Koch's postulates were conducted twice. N. osmanthi is a pathogenic fungus of many crop plants, such as buckwheat (Shen et al 2021), Java tea (Ismail et al. 2022) or buffalograss (Mei et al. 2019) in Asia and particularly in China. However, to our knowledge, this is the first report of N. osmanthi causing leaf blight on water lettuce. Further studies on how to apply formulated N. osmanthi will be required so that the strain could be effectively used to control water lettuce, moreover, its environmental safety also need a rigorous experimental evaluation.

4.
Microb Ecol ; 86(3): 1856-1868, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36719456

RESUMEN

How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.


Asunto(s)
Antozoos , Microbiota , Animales , Antozoos/microbiología , Agua de Mar/microbiología , Concentración de Iones de Hidrógeno , Bacterias/genética , Microbiota/genética , Carbono , Arrecifes de Coral
6.
Plant Dis ; 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35286129

RESUMEN

The rapid spread and colonization of water hyacinth (Eichhornia crassipes) leads to a series of serious environmental problems for water bodies, prompting microbiologists to develop effective mycoherbicides to alleviate the water hyacinth population (Julien et al. 2001). In September 2020, numerous leaftip diebacks and petiole rots of water hyacinth, with 40 to 50% incidence, were observed within an area of 2 ha (ca. 2 km) mat on Jinjiang River tributary, Fujian, China. Ten infected leaf samples were collected and symptomatic tissues were cut into small pieces, surface disinfected in 75% ethanol followed by 0.1% MgCl2 solution and placed on potato dextrose agar (PDA). Pure cultures (Isolates J1 and J5) were obtained and their colonies on PDA appeared as white villi with wrinkled surfaces and dense colorless mycelium on the upper surface, while they were dark olivaceous-gray at the bottom. Internal mycelium consisted of septate, branched, smooth hyphae. There lacked stromata. Conidiophores were solitary to 2 to 5 in loose fascicles, thick-walled, conically truncated, 40 to 80 × 5 to 8 µm. Conidiogenous cells integrated, terminal, 30 to 150 × 4 to 6 µm, slightly protuberant, apical and lateral. Conidia were solitary, hyaline, acicular to obclavate, slightly curved, acute at the apex, 50 to 80 ×3 to 6 µm, indistinctly 1 to 3 septate. Genomic DNA from the two isolates was extracted for PCR, and the internal transcribed spacers (ITS), calmodulin (CAL), translation elongation factor 1-alpha (TEF), actin (ACT), histone H3 (H3) and chitin synthase (CHS) were amplified and sequenced using the primer pairs ITS1/ITS4, CL1/CL2A, EF1Fd/EF1Rd, ACT1Fd/ACT1Rd, CYLH3F/CYLH3R and CHS-79F/CHS-345R (Weir et al. 2012; White et al. 1990), respectively. The ITS (MZ436974-MZ436975), CAL (MZ519385-MZ519386), TEF (OK340826-OK340827), ACT (OK340824-OK340825), H3 (OK340828-OK340829) and CHS (MZ519387-MZ519388) sequences were deposited in GenBank. A phylogenetic tree based on concatenated sequences of ITS-CAL-TEF-ACT-H3-CHS from the genus Cercospora was constructed using a maximum likelihood method, showing that the present isolates and Cercospora rodmanii formed a monophyletic group with 99% bootstrap support. Therefore, the fungus was identified as C. rodmanii (Groenewald et al. 2013; Nguanhom et al. 2015). To test Koch's postulates, petioles of a set of 20 water hyacinth seedlings of 30 to 40 days old were wounded using a sterile needle and then spray-inoculated with 20 µl of the spore suspension of each isolate at 106 CFU/ml. Another set of 20 seedlings inoculated with sterile distilled water served as the controls. Inoculated plants were kept in 50-liter plastic tanks and maintained in a greenhouse at room temperature 22 to 28°C with a relative humidity of 80 to 85%. After 7 to 20 days, lesions were observed on the inoculated leaves but not on the control leaves. The same fungus was reisolated and identified by microscopy and PCR-sequencing. The pathogenicity test was conducted twice. Cercospora rodmanii and C. piaropi have been reported on water hyacinth in America, Brazil, México, and Zambia (Charudattan et al. 1985; Montenegro-Calderón, 2011; Moran, 2015). To our knowledge, this is the first report of C. rodmanii causing leaf and petiole lesions on water hyacinth in China. This report will help identify indigenous plant pathogens in China and develop a novel bioherbicide strategy for control of water hyacinth.

7.
Sci Total Environ ; 810: 152266, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896508

RESUMEN

Ocean acidification (OA) is a pressing issue currently and in the future for coral reefs. The importance of maintenance interactions among partners of the holobiont association in the stress response is well appreciated; however, the candidate molecular and microbial mechanisms that underlie holobiont stress resilience or susceptibility remain unclear. Here, to assess the effects of rapid pH change on coral holobionts at both the protein and microbe levels, combined proteomics and microbiota analyses of the scleractinian coral Galaxea fascicularis exposed to three relevant OA scenarios, including current (pHT = 8.15), preindustrial (pHT = 8.45) and future IPCC-2100 scenarios (pHT = 7.85), were conducted. The results demonstrated that pH changes had no significant effect on the physiological calcification rate of G. fascicularis in a 10-day experiment; however, significant differences were recorded in the proteome and 16S profiling. Proteome variance analysis identified some of the core biological pathways in coral holobionts, including coral host infection and immune defence, and maintaining metabolic compatibility involved in energy homeostasis, nutrient cycling, antibiotic activity and carbon budgets of coral-Symbiodiniaceae interactions were key mechanisms in the early OA stress response. Furthermore, microbiota changes indicate substantial microbial community and functional disturbances in response to OA stress, potentially compromising holobiont health and fitness. Our results may help to elucidate many complex mechanisms to describe scleractinian coral holobiont responses to OA and raise interesting questions for future studies.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Homeostasis , Concentración de Iones de Hidrógeno , Océanos y Mares , Proteoma , Agua de Mar
8.
Sci Total Environ ; 798: 149356, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375251

RESUMEN

This study reports the effects of an external voltage (0 V, 0.4 V and 0.9 V) on soil arsenic (As) release and sequestration when amended with organic carbon (NaAc) and inorganic carbon (NaHCO3), respectively, in a soil bioelectrochemistry system (BES). The results demonstrated that although an external voltage had no effect on the As removal capacity in an oligotrophic environment fueled with NaHCO3, 93.6% of As(III) in the supernatant was removed at 0.9 V with an NaAc amendment. Interestingly, the content of As detected on the electrodes was higher than that removed from the supernatant, implying a continuous release of soil As under external voltages and rapid adsorption onto the electrodes, especially the cathode. In addition, the species of As on the cathode were similar to those in the supernatant (the As(III)/As(V) ratio was approximately 3:1), indicating that the removal capacity was independent of preoxidation. From the viewpoint of electroactive microorganisms (EABs), the relative abundances of the arrA gene and Geobacter genus were specifically enriched at the anode, thus signifying stimulation of the reduction and release of soil As in the anode region. By comparison, Bacillus was particularly abundant at the cathode, which could contribute to the oxidation and sequestration of As in the cathode region. Additionally, specific extracellular polymeric substances (EPSs) secreted by EABs could combine with As, which was followed by electrostatic attraction to the cathode under the effect of an electric field. Furthermore, the formation of secondary minerals and coprecipitation in the presence of iron (Fe) may have also contributed to As removal from solution. The insights from this study will enable us to further understand the biogeochemical cycle of soil As and to explore the feasibility of in situ As bioremediation techniques, combining the aspects of microbial and physicochemical processes in soil bioelectrochemical systems.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Carbono , Electrodos , Suelo , Contaminantes del Suelo/análisis
9.
Plant Dis ; 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33728962

RESUMEN

Water hyacinth (Eichhornia crassipes), a worst invasive aquatic weed has been caused the widespread problems for the water bodies and water resources, particularly the case in China. Plant pathogens are a promising alternative as biocontrol agents (Dagno et al. 2011), but success in this strategy will require the selection of some highly virulent pathogen strains. In September 2020, irregular necrotic lesions on leaves, stems, as well as crown and petiole rots symptoms, occurred on water hyacinth, in Minjiang and Xiyuanjiang watershed, in Fuzhou, China. Fragments from symptomatic leaf tissue (5x5mm) were superficially disinfected in 0.1% MgCl2 solution for 30 s, followed by rinsing three times in sterile water, placed on potato dextrose agar (PDA), and then incubated in darkness at 28°C for 5 days. Two fungal isolates (F3 and F11) were recovered and obtained pure cultures from the affected leaves and deposited in the Institute of Oceanography, Minjiang University. The colonies were stale, with felted, dense, pale grey aerial mycelium, scattered dark based acervuli with orange conidial masses near centre; in reverse side pinkish orange with patches of grey pigment near centre. The hyphae were septate, branched, and 2 to 6 µm in width. Appressoria were not observed. Conidiogenous cells were 20-24 × 3.5-4.5 µm, cylindric to flask-shaped, towards margin the conidiophores with a much looser structure, conidiogenous loci at apex and often also at septa. Asci were 60-80 × 15-20 µm, cylindric to subfusoid, 8-spored. Ascospores were 17-23 × 4-6 µm, gently curved, tapering to quite narrow, rounded ends. Perithecia mature after about 15 days, and were dark brown, subglobose, and 50-150 µm in diameter, and with scattered, dark brown setae about 50-80 µm long. Conidia were 15-25 × 4.5-6 µm, unicellular, colorless, and cylindrical to fusiform. Genomic DNA from two isolates was extracted with a modified DNA Midi Kit (TIANGEN, Inc., Beijing, China), and amplified using ITS4/ITS1F, CL1/CL2A, CHS-79F/CHS-345R, T1/T2 and GDF/GDR primers by PCR (Weir et al. 2012; White et al. 1990). Sequences of F3 and F11 were submitted to GenBank (accession no. ITS, MW307302, MW307303; CAL, MW303427, MW303429; CHS-1, MW303428, MW303430; TUB, MW531006, MW531007; GADPH, MW531008, MW531009). A phylogenetic tree using the maximum likelihood methods and including ITS-CHS-CAL-TUB-GADPH concatenated sequences from Colletotrichum gloeosporioides complex was obtained (Cai et al. 2009; Damm et al. 2018; Weir et al. 2012). Phylogenetic analyses revealed that isolate F3 and F11 were grouped into the clade C. fructicola. To test Koch's postulates, conidial suspensions (107 CFU/ml) of the isolate F3 and F11 were micro-injected into 20 water hyacinth seedlings per isolate. Another 20 seedlings were injected with water without conidia as control. Inoculated plants were kept in 50-liter plastic tanks, and maintained in a greenhouse at room temperature (19-24ºC) for two weeks. The Koch's test was conducted twice. After 10 days, typical anthracnose symptoms similar to the field appeared on the inoculated leaves, while the control leaves remained asymptomatic. The C. fructicola was re-isolated and identified by microscopy, PCR and sequencing, but not on non-inoculated controls. Anthracnose disease caused by C. fructicola has been reported affecting numerous plants worldwide, including cotton, coffea, grape, citrus, ect (Guarnaccia et al. 2017). However, to our knowledge, this is the first report of C. fructicola causing anthracnose on water hyacinth in China. Further studies for the efficacy of C. fructicola and/or of the genus Colletotrichum as biocontrol agent for water hyacinth or another aquatic plant are required (Ding et al. 2007; Dagno et al. 2012).

10.
Front Genet ; 10: 521, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275350

RESUMEN

Melastoma malabathricum is an important medicinal and landscape plant that is globally distributed in temperate and subtropical regions. However, available genomic information for the entire Melastomataceae family is notably limited. In view of the application potential of floral parts in secondary metabolite extraction, we characterized for the first time the floral transcriptomes of two key M. malabathricum varieties, purple variety and white variety. Our transcriptome assembly generated 52,498 and 49,380 unigenes with an N50 of 1,906 and 1,929 bases for the purple and white varieties, respectively. Comparative analysis of two transcriptomes demonstrated that they are highly similar but also highlighted genes that are presumably lineage specific, which explains the phenotypes of each variety. Additionally, a shared transcriptional signature across the floral developmental stages was identified in both M. malabathricum varieties; this signature included pathways related to secondary metabolite synthesis, plant hormone signaling and production, energy homeostasis and nutrient assimilation pathways, and cellular proliferation. The expression levels of flavonoid accumulation and candidate flavonoid biosynthesis-related genes in M. malabathricum flower development stages validated the transcriptome findings. The transcriptome data presented in this study will serve as a valuable resource for future work on the exploitation of M. malabathricum and other related species. The gene expression dynamics during flower development will facilitate the discovery of lineage-specific genes associated with phenotypic characteristics and will elucidate the mechanism of the ontogeny of individual flower types.

11.
Mar Genomics ; 42: 32-40, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30197044

RESUMEN

Little is known about how the coral host and its endosymbiont interactions change when they are exposed to a sudden nonlinear environmental transformation, yet this is crucial to coral survival in extreme events. Here, we present a study that investigates the transcriptomic response of corals and their endosymbionts to an abrupt change in pH (pH 7.60 and 8.35). The transcriptome indicates that the endosymbiont demonstrates a synchronized downregulation in carbon acquisition and fixation processes and may result in photosynthetic dysfunction in endosymbiotic Symbiodinium, suggesting that the mutualistic continuum of coral-algae interactions is compromised in response to high-CO2 exposure. Transcriptomic data also shows that corals are still capable of calcifying in response to the low pH but could experience a series of negative effects on their energy dynamics, which including protein damage, DNA repair, ion transport, cellular apoptosis, calcification acclimation and maintenance of intracellular pH homeostasis and stress tolerance to pH swing. This suggests enhanced energy costs for coral metabolic adaptation. This study provides a deeper understanding of the biological basis related to the symbiotic corals in response to extreme future climate change and environmental variability.


Asunto(s)
Antozoos/fisiología , Dinoflagelados/fisiología , Simbiosis , Transcriptoma , Animales , Antozoos/genética , China , Dinoflagelados/genética , Concentración de Iones de Hidrógeno
12.
Sci Rep ; 7: 42100, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181581

RESUMEN

In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutrophied nutrient regimes. We identified 236 and 205 genes that were differentially expressed in eutrophied hosts and symbionts, respectively. Both gene sets included pathways related to stress responses and metabolic interactions. An analysis of genes originating from each partner revealed striking metabolic integration with respect to vitamins, cofactors, amino acids, fatty acids, and secondary metabolite biosynthesis. The expression levels of these genes supported the existence of a continuum of mutualism in this coral-algal symbiosis. Additionally, large sets of transcription factors, cell signal transduction molecules, biomineralization components, and galaxin-related proteins were expanded in G. fascicularis relative to other coral species.


Asunto(s)
Antozoos/crecimiento & desarrollo , Antozoos/parasitología , Dinoflagelados/crecimiento & desarrollo , Eutrofización , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Simbiosis , Animales , Antozoos/genética , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/parasitología , China , Dinoflagelados/genética , Estrés Fisiológico
13.
Sci Rep ; 6: 29692, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27434999

RESUMEN

Pokkah boeng, caused by Fusarium verticillioides, is a serious disease in sugarcane industry. The disease severity is related to the sugarcane genotype as well as environmental considerations, such as nitrogen application. The impact of the nitrogen source (ammonium sulfate, urea, or sodium nitrate) on sugarcane pokkah boeng disease and its pathogen was investigated in planta and fungal growth and sporulation production was measured in vitro. The results showed that ammonium and nitrate were beneficial to fungal mycelium growth, cell densities, and sporulation, which enhanced the disease symptoms of sugarcane pokkah boeng compared to urea fertilization. A total of 1,779 transcripts out of 13,999 annotated genes identified from global transcriptomic analysis were differentially expressed in F. verticillioides CNO-1 grown in the different sources of nitrogen. These were found to be involved in nitrogen metabolism, transport, and assimilation. Many of these genes were also associated with pathogenicity based on the PHI-base database. Several transcription factors were found to be associated with specific biological processes related to nitrogen utilization. Our results further demonstrated that nitrogen availability might play an important role in disease development by increasing fungal cell growth as well as influencing the expression of genes required for successful pathogenesis.


Asunto(s)
Fusarium/genética , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Transcriptoma , Análisis por Conglomerados , Proteínas Fúngicas/genética , Fusarium/fisiología , Ontología de Genes , Genes Fúngicos/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Saccharum/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
14.
Plant Dis ; 99(3): 325-332, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30699701

RESUMEN

Sugarcane twisted leaf disease, caused by Phoma sp., was first reported in Guangxi, China, in 2012, when more than 5% of sugarcane was infected in the field. Three single-spore isolates were recovered from symptomatic leaves. Sequences from five fungal loci, 28S nrDNA (LSU), 18S nrDNA (SSU), the internal transcribed spacer regions 1 and 2 and 5.8S nrDNA (ITS), ß-tubulin (TUB), and the translation elongation factor alpha (TEF-α) were amplified from the disease-associated isolates. The twisted leaf disease pathogen was identified and formally described as Phoma sorghina var. saccharum through phylogenetic analyses, morphological observations, and the pathogenicity of the isolates on sugarcane. P. sorghina var. saccharum can be differentiated from related species based on the morphology of pycnidia and chlamydospores that formed regular, glabrous, papillate ostioles. Chlamydospore-anamorph was unicellular, botryoid-alternarioid shape, as well as the binucleate, frequently branched hyphae. We also showed that mycelial growth of P. sorghina var. saccharum was optimal at pH 4.0 and 20 to 25°C. Additionally, among 13 chemical compounds tested, carbendazim was found to be the most effective in suppressing the radial growth of the fungus. Mycelial growth in vitro was completely inhibited at concentrations of 100 and 50 ppm, and 87.6% of mycelial growth was inhibited at 10 ppm. Carbendazim is therefore a potentially effective fungicide to control this disease in China.

15.
PLoS One ; 9(8): e104195, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25141192

RESUMEN

BACKGROUND: Pokkah boeng disease caused by the Fusarium species complex results in significant yield losses in sugarcane. Thus, the rapid and accurate detection and identification of the pathogen is urgently required to manage and prevent the spreading of sugarcane pokkah boeng. METHODS: A total of 101 isolates were recovered from the pokkah boeng samples collected from five major sugarcane production areas in China throughout 2012 and 2013. The causal pathogen was identified by morphological observation, pathogenicity test, and phylogenetic analysis based on the fungus-conserved rDNA-ITS. Species-specific TaqMan real-time PCR and conventional PCR methods were developed for rapid and accurate detection of the causal agent of sugarcane pokkah boeng. The specificity and sensitivity of PCR assay were also evaluated on a total of 84 isolates of Fusarium from China and several isolates from other fungal pathogens of Sporisorium scitamineum and Phoma sp. and sugarcane endophyte of Acremonium sp. RESULT: Two Fusarium species (F. verticillioides and F. proliferatum) that caused sugarcane pokahh boeng were identified by morphological observation, pathogenicity test, and phylogenetic analysis. Species-specific TaqMan PCR and conventional PCR were designed and optimized to target their rDNA-ITS regions. The sensitivity of the TaqMan PCR was approximately 10 pg of fungal DNA input, which was 1,000-fold over conventional PCR, and successfully detected pokkah boeng in the field-grown sugarcane. CONCLUSIONS/SIGNIFICANCE: This study was the first to identify two species, F. verticillioides and F. proliferatum, that were causal pathogens of sugarcane pokkah boeng in China. It also described the development of a species-specific PCR assay to detect and confirm these pathogens in sugarcane plants from mainland China. This method will be very useful for a broad range of research endeavors as well as the regulatory response and management of sugarcane pokkah boeng.


Asunto(s)
Fusariosis/diagnóstico , Fusarium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Saccharum/microbiología , China , ADN de Hongos/genética , Fusariosis/microbiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...