Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6544, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095338

RESUMEN

Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter.

2.
Sci Bull (Beijing) ; 69(11): 1653-1659, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641514

RESUMEN

Topological band theory has conventionally been concerned with the topology of bands around a single gap. Only recently non-Abelian topologies that thrive on involving multiple gaps were studied, unveiling a new horizon in topological physics beyond the conventional paradigm. Here, we report on the first experimental realization of a topological Euler insulator phase with unique meronic characterization in an acoustic metamaterial. We demonstrate that this topological phase has several nontrivial features: First, the system cannot be described by conventional topological band theory, but has a nontrivial Euler class that captures the unconventional geometry of the Bloch bands in the Brillouin zone. Second, we uncover in theory and probe in experiments a meronic configuration of the bulk Bloch states for the first time. Third, using a detailed symmetry analysis, we show that the topological Euler insulator evolves from a non-Abelian topological semimetal phase via. the annihilation of Dirac points in pairs in one of the band gaps. With these nontrivial properties, we establish concretely an unconventional bulk-edge correspondence which is confirmed by directly measuring the edge states via. pump-probe techniques. Our work thus unveils a nontrivial topological Euler insulator phase with a unique meronic pattern and paves the way as a platform for non-Abelian topological phenomena.

4.
Nat Commun ; 15(1): 1601, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383526

RESUMEN

Entanglement entropy is a fundamental concept with rising importance in various fields ranging from quantum information science, black holes to materials science. In complex materials and systems, entanglement entropy provides insight into the collective degrees of freedom that underlie the systems' complex behaviours. As well-known predictions, the entanglement entropy exhibits area laws for systems with gapped excitations, whereas it follows the Gioev-Klich-Widom scaling law in gapless fermion systems. However, many of these fundamental predictions have not yet been confirmed in experiments due to the difficulties in measuring entanglement entropy in physical systems. Here, we report the experimental verification of the above predictions by probing the nonlocal correlations in phononic systems. We obtain the entanglement entropy and entanglement spectrum for phononic systems with the fermion filling analog. With these measurements, we verify the Gioev-Klich-Widom scaling law. We further observe the salient signatures of topological phases in entanglement entropy and entanglement spectrum.

5.
Nat Commun ; 15(1): 197, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172091

RESUMEN

Branched flows occur ubiquitously in various wave systems, when the propagating waves encounter weak correlated scattering potentials. Here we report the experimental realization of electrical tuning of the branched flow of light using a nematic liquid crystal (NLC) system. We create the physical realization of the weakly correlated disordered potentials of light via the inhomogeneous orientations of the NLC. We demonstrate that the branched flow of light can be switched on and off as well as tuned continuously through the electro-optical properties of NLC film. We further show that the branched flow can be manipulated by the polarization of the incident light due to the optical anisotropy of the NLC film. The nature of the branched flow of light is revealed via the unconventional intensity statistics and the rapid fidelity decay along the light propagation. Our study unveils an excellent platform for the tuning of the branched flow of light which creates a testbed for fundamental physics and offers a new way for steering light.

6.
Rep Prog Phys ; 86(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37706242

RESUMEN

The concept of topological energy bands and their manifestations have been demonstrated in condensed matter systems as a fantastic paradigm toward unprecedented physical phenomena and properties that are robust against disorders. Recent years, this paradigm was extended to phononic metamaterials (including mechanical and acoustic metamaterials), giving rise to the discovery of remarkable phenomena that were not observed elsewhere thanks to the extraordinary controllability and tunability of phononic metamaterials as well as versatile measuring techniques. These phenomena include, but not limited to, topological negative refraction, topological 'sasers' (i.e. the phononic analog of lasers), higher-order topological insulating states, non-Abelian topological phases, higher-order Weyl semimetal phases, Majorana-like modes in Dirac vortex structures and fragile topological phases with spectral flows. Here we review the developments in the field of topological phononic metamaterials from both theoretical and experimental perspectives with emphasis on the underlying physics principles. To give a broad view of topological phononics, we also discuss the synergy with non-Hermitian effects and cover topics including synthetic dimensions, artificial gauge fields, Floquet topological acoustics, bulk topological transport, topological pumping, and topological active matters as well as potential applications, materials fabrications and measurements of topological phononic metamaterials. Finally, we discuss the challenges, opportunities and future developments in this intriguing field and its potential impact on physics and materials science.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37605410

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma worldwide. Novel treatment strategies are still needed for refractory or relapsed DLBCL. OBJECTIVE: The present study aimed to systematically explore the potential targets and molecular mechanisms of matrine in the treatment of DLBCL. METHODS: Potential matrine targets were collected from multiple platforms. Microarray data and clinical characteristics of DLBCL were downloaded from publicly available databases. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were applied to identify the hub genes of DLBCL using R software. Then, the shared target genes between matrine and DLBCL were identified as the potential targets of matrine against DLBCL. The least absolute shrinkage and selection operator (LASSO) algorithm was used to determine the final core target genes, which were further verified by molecular docking simulation and receiver operating characteristic (ROC) curve analysis. Functional analysis was also performed to elucidate the potential mechanisms. RESULTS: A total of 222 matrine target genes and 1269 DLBCL hub genes were obtained through multiple databases and machine learning algorithms, respectively. From the nine shared target genes of matrine and DLBCL, five final core target genes, including CTSL, NR1H2, PDPK1, MDM2, and JAK3, were identified. Molecular docking showed that the binding of matrine to the core genes was stable. ROC curves also suggested close associations between the core genes and DLBCL. Additionally, functional analysis showed that the therapeutic effect of matrine against DLBCL may be related to the PI3K-Akt signaling pathway. CONCLUSION: Matrine may target five genes and the PI3K-Akt signaling pathway in DLBCL treatment.

8.
Nat Commun ; 14(1): 4457, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491343

RESUMEN

Topologically protected photonic edge states offer unprecedented robust propagation of photons that are promising for waveguiding, lasing, and quantum information processing. Here, we report on the discovery of a class of hybrid topological photonic crystals that host simultaneously quantum anomalous Hall and valley Hall phases in different photonic band gaps. The underlying hybrid topology manifests itself in the edge channels as the coexistence of the dual-band chiral edge states and unbalanced valley Hall edge states. We experimentally realize the hybrid topological photonic crystal, unveil its unique topological transitions, and verify its unconventional dual-band gap topological edge states using pump-probe techniques. Furthermore, we demonstrate that the dual-band photonic topological edge channels can serve as frequency-multiplexing devices that function as both beam splitters and combiners. Our study unveils hybrid topological insulators as an exotic topological state of photons as well as a promising route toward future applications in topological photonics.

9.
Sci Prog ; 106(3): 368504231188627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464794

RESUMEN

In order to explore the characteristics of pressure pulsation signals and energy distribution of water flow at the guide vane considering impeller-guide vane interaction. The numerical simulation of the vertical axial flow pump device's steady and unsteady three-dimensional flow fields was carried out. The Hilbert-Huang method was used to conduct empirical mode decomposition decomposition and Hilbert spectrum analysis of pressure pulsation signal at each monitoring point in the inlet and outlet regions of the guide vane. The results show: Under the condition of 0.3Qbep, the internal pressure of the guide vane is obviously affected by the impeller, and there are large block-shaped vortex structures in the guide vane. Under the operating conditions of 1.0Qbep and 1.2Qbep, the size of the pressure area in the guide vane is basically not affected by the impeller, and the vortex structures in the guide vane are concentrated near the outlet of the guide vanes, and there are long strip-shaped vortex structures at the edge of the guide vane. The size and number of vortex structures decrease with the increase in flow rate. The pressure pulsation signal at the inlet of the guide vane is affected by the rotation of the impeller and exhibits good periodicity, with the main frequency centered around 146 Hz, and the energy ratio of the main frequency is up to 97.7%. There are low-frequency signals below 100 Hz and high-frequency signals fluctuating around 146 Hz in all three flow conditions. When the flow rate increases, the fluctuation amplitude of the high-frequency signal increases. The flow rate has a significant impact on the water flow at the outlet of the guide vane. At 0.3Qbep, its frequency is distributed in the range of 0-500 Hz, mainly concentrated in the area below 400 Hz. At 1.0Qbep, the frequency of pressure pulsation is distributed below 250 Hz after the guiding function of the guide vane. At 1.2Qbep, the water flow is mainly controlled by the rotation of the impeller, and after the energy recovery of the guide vane, its main frequency is still concentrated around 150 Hz, which is 337.2% and 268.5% of 0.3Qbep and 1.0Qbep. Under the working condition of 0.3Qbep, the proportion of intrinsic mode function energy corresponding to the dominant frequency at the center of the guide vane inlet is as high as 95.9%, and the proportion of intrinsic mode function energy corresponding to the dominant frequency at the shroud side and hub side of the guide vane is rather low. If the flow rate rises from 0.3Qbep to 1.2Qbep, the proportion of intrinsic mode function energy increases by more than 42%. Under the working conditions of 0.3Qbep and 1.0Qbep, the main frequency of pressure pulsation signal of water flow at the guide vane outlet is less affected by the impeller and the corresponding energy proportion is low. Under the working condition of 1.2Qbep, the main frequency of pressure pulsation signal is 4 times the rotational frequency and the corresponding energy proportion is higher than 60%.

10.
Bioengineering (Basel) ; 10(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106606

RESUMEN

Large hospitals can be complex, with numerous discipline and subspecialty settings. Patients may have limited medical knowledge, making it difficult for them to determine which department to visit. As a result, visits to the wrong departments and unnecessary appointments are common. To address this issue, modern hospitals require a remote system capable of performing intelligent triage, enabling patients to perform self-service triage. To address the challenges outlined above, this study presents an intelligent triage system based on transfer learning, capable of processing multilabel neurological medical texts. The system predicts a diagnosis and corresponding department based on the patient's input. It utilizes the triage priority (TP) method to label diagnostic combinations found in medical records, converting a multilabel problem into a single-label one. The system considers disease severity and reduces the "class overlapping" of the dataset. The BERT model classifies the chief complaint text, predicting a primary diagnosis corresponding to the complaint. To address data imbalance, a composite loss function based on cost-sensitive learning is added to the BERT architecture. The study results indicate that the TP method achieves a classification accuracy of 87.47% on medical record text, outperforming other problem transformation methods. By incorporating the composite loss function, the system's accuracy rate improves to 88.38% surpassing other loss functions. Compared to traditional methods, this system does not introduce significant complexity, yet substantially improves triage accuracy, reduces patient input confusion, and enhances hospital triage capabilities, ultimately improving the patient's medical experience. The findings could provide a reference for intelligent triage development.

11.
J Oncol ; 2022: 3652107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467501

RESUMEN

Background: Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults. Thus, novel reliable biomarkers need to be further explored to increase diagnostic, therapeutic, and prognostic effectiveness. Methods: Six datasets containing CLL and control samples were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis, weighted gene coexpression network analysis (WGCNA), and the least absolute shrinkage and selection operator (LASSO) regression were applied to identify potential diagnostic biomarkers for CLL using R software. The diagnostic performance of the hub genes was then measured by the receiver operating characteristic (ROC) curve analysis. Functional analysis was implemented to uncover the underlying mechanisms. Additionally, correlation analysis was performed to assess the relationship between the hub genes and immunity characteristics. Results: A total number of 47 differentially expressed genes (DEGs) and 25 candidate hub genes were extracted through differential gene expression analysis and WGCNA, respectively. Based on the 14 overlapped genes between the DEGs and the candidate hub genes, LASSO regression analysis was used, which identified a final number of six hub genes as potential biomarkers for CLL: ABCA6, CCDC88A, PMEPA1, EBF1, FILIP1L, and TEAD2. The ROC curves of the six genes showed reliable predictive ability in the training and validation cohorts, with all area under the curve (AUC) values over 0.80. Functional analysis revealed an abnormal immune status in the CLL patients. A significant correlation was found between the hub genes and the immune-related pathways, indicating a possible tight connection between the hub genes and tumor immunity in CLL. Conclusion: This study was based on machine learning algorithms, and we identified six genes that could be possible CLL markers, which may be involved in CLL pathogenesis and progression through immune-related signal pathways.

12.
Sci Bull (Beijing) ; 67(20): 2069-2075, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36546106

RESUMEN

Topological phases of matter have been extensively investigated in solid-state materials and classical wave systems with integer dimensions. However, topological states in non-integer dimensions remain almost unexplored. Fractals, being self-similar on different scales, are one of the intriguing complex geometries with non-integer dimensions. Here, we demonstrate fractal higher-order topological states with unprecedented emergent phenomena in a Sierpinski acoustic metamaterial. We uncover abundant topological edge and corner states in the acoustic metamaterial due to the fractal geometry. Interestingly, the numbers of the edge and corner states depend exponentially on the system size, and the leading exponent is the Hausdorff fractal dimension of the Sierpinski carpet. Furthermore, the results reveal the unconventional spectrum and rich wave patterns of the corner states with consistent simulations and experiments. This study thus unveils unconventional topological states in fractal geometry and may inspire future studies of topological phenomena in non-Euclidean geometries.

13.
Phys Rev Lett ; 129(15): 154301, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269958

RESUMEN

Disclinations-topological defects ubiquitously existing in various materials-can reveal the intrinsic band topology of the hosting material through the bulk-disclination correspondence. In low-dimensional materials and nanostructure such as graphene and fullerenes, disclinations yield curved surfaces and emergent non-Euclidean geometries that are crucial in understanding the properties of these materials. However, the bulk-disclination correspondence has never been studied in non-Euclidean geometry, nor in systems with p-orbital physics. Here, by creating p-orbital topological acoustic metamaterials with disclination-induced conic and hyperbolic surfaces, we demonstrate the rich emergent bound states arising from the interplay among the real-space geometry, the bulk band topology, and the p-orbital physics. This phenomenon is confirmed by clear experimental evidence that is consistent with theory and simulations. Our experiment paves the way toward topological phenomena in non-Euclidean geometries and will stimulate interesting research on, e.g., topological phenomena for electrons in nanomaterials with curved surfaces.

14.
Entropy (Basel) ; 24(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36141086

RESUMEN

The energy loss of the vertical axial flow pump device increases due to the unstable internal flow, which reduces the efficiency of the pump device and increases its energy consumption of the pump device. The research results of the flow loss characteristics of the total internal conduit are still unclear. Therefore, to show the internal energy loss mechanism of the axial flow pump, this paper used the entropy production method to calculate the energy loss of the total conduit of the pump device to clarify the internal energy loss mechanism of the pump device. The results show that the energy loss of the impeller is the largest under various flow conditions, accounting for more than 40% of the total energy loss of the pump device. The variation trend of the volume average entropy production and the energy loss is similar under various flow coefficients (KQ). The volume average entropy production rate (EPR) and the energy loss decrease first and then increase with the increase of flow, the minimum volume average entropy production is 378,000 W/m3 at KQ = 0.52, and the area average EPR of the impeller increases gradually with the increase of flow. Under various flow coefficient KQ, the energy loss of campaniform inlet conduit is the smallest, accounting for less than 1% of the total energy loss. Its maximum value is 63.58 W. The energy loss of the guide vane and elbow increases with the increase of flow coefficient KQ, and the maximum ratio of energy loss to the total energy loss of the pump device is 29% and 21%, respectively, at small flow condition KQ = 0.38. The energy loss of straight outlet conduit reduces first and then increases with the increase of flow coefficient KQ. When flow coefficient KQ = 0.62, it accounts for 27% of the total energy loss of the pump device, but its area average entropy production rate (EPR) and volume average entropy production rate (EPR) are small. The main entropy production loss in the pump device is dominated by entropy production by turbulent dissipation (EPTD), and the proportion of entropy production by direct dissipation (EPDD) is the smallest.

15.
Adv Sci (Weinh) ; 9(24): 2201568, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36035068

RESUMEN

Using 3D sonic crystals as acoustic higher-order topological insulators (HOTIs), 2D surface states described by spin-1 Dirac equations at the interfaces between the two sonic crystals with distinct topology but the same crystalline symmetry are discovered. It is found that the Dirac mass can be tuned by the geometry of the two sonic crystals. The sign reversal of the Dirac mass reveals a surface topological transition where the surface states exhibit zero refractive index behavior. When the surface states are gapped, 1D hinge states emerge due to the topology of the gapped surface states. The zero refractive index behavior and the emergent topological hinge states are confirmed experimentally. This study reveals a multidimensional Wannier orbital control that leads to extraordinary properties of surface states and unveils an interesting topological mechanism for the control of surface waves.

16.
Nat Mater ; 21(4): 430-437, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35314775

RESUMEN

Gauge fields play a major role in understanding quantum effects. For example, gauge flux insertion into single unit cells is crucial towards detecting quantum phases and controlling quantum dynamics and classical waves. However, the potential of gauge fields in topological materials studies has not been fully exploited. Here, we experimentally demonstrate artificial gauge flux insertion into a single plaquette of a sonic crystal with a gauge phase ranging from 0 to 2π. We insert the gauge flux through a three-step process of dimensional extension, engineering a screw dislocation and dimensional reduction. Additionally, the single-plaquette gauge flux leads to cyclic spectral flows across multiple bandgaps that manifest as topological boundary states on the plaquette and emerge only when the flux-carrying plaquette encloses the Wannier centres. We termed this phenomenon as the topological Wannier cycle. This work paves the way towards sub-unit-cell gauge flux, enabling future studies on synthetic gauge fields and topological materials.

17.
Exp Ther Med ; 23(1): 62, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34934433

RESUMEN

Myocardial infarction (MI), the leading cause of death among patients with cardiovascular diseases, is characterized by acute cardiac muscle injury due to severe impairment of the coronary blood supply, which may lead to cardiogenic shock and cardiac arrest. Particularly interesting new cysteine histidine rich 1 (PINCH1) protein, a key component of the integrin signaling pathway, interacts with several proteins and serves a vital role in numerous cellular processes, including cytoskeleton remodeling, cell proliferation and cell migration. To investigate the role of PINCH1 in heart injury in the present study, PINCH1 was knocked out in the myocardial tissue of mice (age, 18 weeks) to induce MI. In addition, cell viability, migration and apoptosis, as well as the expression levels of NF-κB-associated proteins were determined in murine HL1 cardiomyocytes with a conditional PINCH1 shRNA using Cell Counting Kit-8, Transwell, flow cytometry and western blot assays, respectively. Furthermore, the cardiac expansion and myocardial fibrosis in PINCH1 knockout mice was investigated in vivo by performing morphological and histological examinations. Additionally, the murine ventricular myocardial ultrastructure was evaluated using an electron microscope, and the cardiomyocyte apoptotic rate and expression levels of NF-κB-related proteins were determined using TUNEL and western blot assays, respectively. The results showed that the apoptotic rate in the in vivo PINCH1 knockdown group was significantly increased. In addition, the protein expression levels of NF-κB signaling pathway-related proteins, including NF-κB, myeloid differentiation factor 88, TNF-α and caspase-3, were significantly increased in the in vivo PINCH1 knockdown group compared with the wild-type group, but the protein expression of MMP2 and MMP9 were the opposite. Overall, the in vitro and in vivo results revealed that PINCH1 knockout in mice significantly aggravated MI via the NF-κB signaling pathway.

18.
Exp Ther Med ; 22(5): 1288, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34630643

RESUMEN

Acute myocardial infarction (AMI) is a form of cardiomyopathy in which a blocked coronary artery leads to an irreversible loss of cardiomyocytes due to inadequate blood and oxygen supply to the distal myocardium tissues, eventually leading to heart failure. Recently, studies have revealed that microRNA (miRNA/miR)-24 has diagnostic value in the pathogenesis of AMI by affecting multiple cell processes such as cell proliferation, differentiation and apoptosis. However, the specific mechanism of miR-24 in ischemia-reperfusion injury (IRI) after AMI remains to be fully elucidated. The present study aimed to investigate the effects and mechanisms of miR-24 in IRI. In vitro, the current study detected cellular apoptosis and apoptotic-related protein expression levels in the cardiomyocyte H9C2 cell line (negative control group, model group and miRNA group) via flow cytometry and western blot analysis. In the in vivo study, rats were randomly divided into sham, model and miRNA groups. The infarct area was observed using nitro blue tetrazolium staining, pathological changes of the myocardium were detected via hematoxylin and eosin staining and TUNEL staining was used to detect cardiomyocyte apoptosis. The expression levels of related proteins were evaluated via immunohistochemistry and western blot analysis. The in vitro and in vivo results demonstrated that miR-24 significantly inhibited cardiomyocyte apoptosis compared with the model group. Concurrently, the expression levels of proteins associated with the NF-κB/TNF-α pathway (NF-κB, caspase-3, Bax, Bcl-2, TNF-α, vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and monocyte chemoattractant protein-1) in the miRNA group were significantly different from the model group (P<0.001). Compared with the model group, miR-24 significantly improved pathological damage and infarct size of rat myocardium. Overall, the present results suggested that miR-24 improves myocardial injury in rats by inhibiting the NF-κB/TNF-α pathway.

19.
Phys Rev Lett ; 127(14): 144502, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652207

RESUMEN

Despite a long history of studies, acoustic waves are generally regarded as spinless scalar waves, until recent research revealed their rich structures. Here, we report the experimental observation of skyrmion configurations in acoustic waves. We find that surface acoustic waves trapped by a designed hexagonal acoustic metasurface give rise to skyrmion lattice patterns in the dynamic acoustic velocity fields (i.e., the oscillating acoustic air flows). Using an acoustic velocity sensing technique, we directly visualize a Néel-type skyrmion configuration of the acoustic velocity fields. We further demonstrate, respectively, the controllability and robustness of the acoustic skyrmion lattices by tuning the phase differences between the acoustic sources and by introducing local perturbations in our setup. Our study unveils a fundamental acoustic phenomenon that may enable unprecedented manipulation of acoustic waves and may inspire future technologies including advanced acoustic tweezers for the control of small particles.

20.
Nat Mater ; 20(6): 794-799, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33859382

RESUMEN

Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4-8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA