Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508240

RESUMEN

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS: We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS: We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS: We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS: Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.

2.
Chemosphere ; 354: 141737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499078

RESUMEN

Extracting heavy metal ions from wastewater has significant implications for both environmental remediation and resource preservation. However, the conventional adsorbents still suffer from incomplete ion removal and low utilization efficiency of the recovered metals. Herein, we present an extraction and reutilization method assisted by porous boron nitride (p-BN) containing high-density N atoms for metal recovery with simultaneous catalyst formation. The p-BN exhibits stable and efficient metal adsorption performance, particularly for ultra-trace-level water purification. The distribution coefficients towards Pb2+, Cd2+, Co2+ and Fe3+ can exceed 106 mL g-1 and the residual concentrations that reduced from 1 mg L-1 to 0.8-1.3 µg L-1 are much lower than the acceptable limits in drinking water standards of World Health Organization. Meanwhile, the used p-BN after Co ion adsorption can be directly adopted as a high-efficiency catalyst for activating peroxymonosulfate (PMS) in organic pollutant degradation without additional post-treatment, avoiding the secondary metal pollution and the problems of neglected manpower and energy consumption. Moreover, a flow-through multistage utilization system assisted by p-BN/polyvinylidene fluoride (PVDF) membrane is constructed for achieving both metal ion separation and reutilization in the removal of organic pollutants, providing a new avenue for sustainable wastewater remediation.


Asunto(s)
Compuestos de Boro , Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Aguas Residuales , Porosidad , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Adsorción , Iones
3.
Cell Rep Med ; 4(8): 101128, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478857

RESUMEN

Mechanical stress can modulate the fate of cells in both physiological and extreme conditions. Recurrence of tumors after thermal ablation, a radical therapy for many cancers, indicates that some tumor cells can endure temperatures far beyond physiological ones. This unusual heat resistance with unknown mechanisms remains a key obstacle to fully realizing the clinical potential of thermal ablation. By developing a 3D bioprinting-based thermal ablation system, we demonstrate that hepatocellular carcinoma (HCC) cells in this 3D model exhibit enhanced heat resistance as compared with cells on plates. Mechanistically, the activation of transcription factor SP1 under mechanical confinement enhances the transcription of Interleukin-4-Induced-1, which catalyzes tryptophan metabolites to activate the aryl hydrocarbon receptor (AHR), leading to heat resistance. Encouragingly, the AHR inhibitor prevents HCC recurrence after thermal ablation. These findings reveal a previously unknown role of mechanical confinement in heat resistance and provide a rationale for AHR inhibitors as neoadjuvant therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/uso terapéutico , Calor , Terapia Neoadyuvante , L-Aminoácido Oxidasa/uso terapéutico
4.
Gut ; 72(6): 1196-1210, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596711

RESUMEN

OBJECTIVE: Revealing the single-cell immune ecosystems in true versus de novo hepatocellular carcinoma (HCC) recurrences could help the optimal development of immunotherapies. DESIGN: We performed 5'and VDJ single-cell RNA-sequencing on 34 samples from 20 recurrent HCC patients. Bulk RNA-sequencing, flow cytometry, multiplexed immunofluorescence, and in vitro functional analyses were performed on samples from two validation cohorts. RESULTS: Analyses of mutational profiles and evolutionary trajectories in paired primary and recurrent HCC samples using whole-exome sequencing identified de novo versus true recurrences, some of which occurred before clinical diagnosis. The tumour immune microenvironment (TIME) of truly recurrent HCCs was characterised by an increased abundance in KLRB1+CD8+ T cells with memory phenotype and low cytotoxicity. In contrast, we found an enrichment in cytotoxic and exhausted CD8+ T cells in the TIME of de novo recurrent HCCs. Transcriptomic and interaction analyses showed elevated GDF15 expression on HCC cells in proximity to dendritic cells, which may have dampened antigen presentation and inhibited antitumour immunity in truly recurrent lesions. In contrast, myeloid cells' cross talk with T cells-mediated T cell exhaustion and immunosuppression in the TIME of de novo recurrent HCCs. Consistent with these findings, a phase 2 trial of neoadjuvant anti-PD-1 immunotherapy showed more responses in de novo recurrent HCC patients. CONCLUSION: True and de novo HCC recurrences occur early, have distinct TIME and may require different immunotherapy strategies. Our study provides a source for genomic diagnosis and immune profiling for guiding immunotherapy based on the type of HCC recurrence and the specific TIME.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Virus de la Hepatitis B/genética , Linfocitos T CD8-positivos , Ecosistema , ARN/metabolismo , Microambiente Tumoral
5.
Eur J Pharmacol ; 920: 174832, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183533

RESUMEN

Hepatocyte growth-promoting factor (pHGF) has a significant effect in promoting liver cell proliferation and restoring liver function. In this study, 815 short peptides of pHGF were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), of which 574 short peptides were assigned to 152 proteins related to hemoglobin subunits and some catalytic enzymes, indicating that pHGF might participate in the oxidation-reduction process by regulating reactive oxygen species (ROS) production. Proteomic analysis was used to identify the differentially expressed proteins (DEPs) in SMMC-7721 and L-02 cells after pHGF treatment, which suggested that pHGF had a significant impact on the JAK-STAT signaling pathway and the cell cycle of liver cells. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis revealed the mechanisms through which pHGF might activate the JAK2/STAT3/c-MYC pathway to up-regulate the expression of CDK4/6, thereby accelerating the G1/S transition to promote liver cell proliferation. These findings, for the first time, indicate the potential role of pHGF against the early or middle stages of acute, sub-acute, and chronic severe hepatitis. pHGF was also found to restore the reduced SOD1 and SOD2 protein levels that result from H2O2 exposure and significantly increase the HO-1 protein levels in L-02 cells, thus improving the viability of L-02 cells that have been damaged by H2O2 by reducing the ROS and lipid peroxidation levels.


Asunto(s)
Citoprotección , Peróxido de Hidrógeno , Proliferación Celular , Cromatografía Liquida , Hepatocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Janus Quinasa 2/metabolismo , Hígado/metabolismo , Proteómica , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
6.
Genomics Proteomics Bioinformatics ; 20(4): 648-656, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35123071

RESUMEN

Bisecting N-acetylglucosamine (GlcNAc), a GlcNAc linked to the core ß-mannose residue via a ß1,4 linkage, is a special type of N-glycosylation that has been reported to be involved in various biological processes, such as cell adhesion and fetal development. This N-glycan structure is abundant in human trophoblasts, which is postulated to be resistant to natural killer cell-mediated cytotoxicity, enabling a mother to nourish a fetus without rejection. In this study, we hypothesized that the human amniotic membrane, which serves as the last barrier for the fetus, may also express bisected-type glycans. To test this hypothesis, glycomic analysis of the human amniotic membrane was performed, and bisected N-glycans were detected. Furthermore, our proteomic data, which have been previously employed to explore human missing proteins, were analyzed and the presence of bisecting GlcNAc-modified peptides was confirmed. A total of 41 glycoproteins with 43 glycopeptides were found to possess a bisecting GlcNAc, and 25 of these glycoproteins were reported to exhibit this type of modification for the first time. These results provide insights into the potential roles of bisecting GlcNAc modification in the human amniotic membrane, and can be beneficial to functional studies on glycoproteins with bisecting GlcNAc modifications and functional studies on immune suppression in human placenta.


Asunto(s)
Acetilglucosamina , Amnios , Humanos , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Amnios/metabolismo , Proteómica , Glicoproteínas/química , Polisacáridos/química , Espectrometría de Masas
7.
Entropy (Basel) ; 24(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37420376

RESUMEN

Image fusion technology can process multiple single image data into more reliable and comprehensive data, which play a key role in accurate target recognition and subsequent image processing. In view of the incomplete image decomposition, redundant extraction of infrared image energy information and incomplete feature extraction of visible images by existing algorithms, a fusion algorithm for infrared and visible image based on three-scale decomposition and ResNet feature transfer is proposed. Compared with the existing image decomposition methods, the three-scale decomposition method is used to finely layer the source image through two decompositions. Then, an optimized WLS method is designed to fuse the energy layer, which fully considers the infrared energy information and visible detail information. In addition, a ResNet-feature transfer method is designed for detail layer fusion, which can extract detailed information such as deeper contour structures. Finally, the structural layers are fused by weighted average strategy. Experimental results show that the proposed algorithm performs well in both visual effects and quantitative evaluation results compared with the five methods.

8.
Mar Life Sci Technol ; 4(2): 277-290, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-37073226

RESUMEN

Understanding the mechanisms, structuring microbial communities in oligotrophic ocean surface waters remains a major ecological endeavor. Functional redundancy and metabolic tuning are two mechanisms that have been proposed to shape microbial response to environmental forcing. However, little is known about their roles in the oligotrophic surface ocean due to less integrative characterization of community taxonomy and function. Here, we applied an integrated meta-omics-based approach, from genes to proteins, to investigate the microbial community of the oligotrophic northern Indian Ocean. Insignificant spatial variabilities of both genomic and proteomic compositions indicated a stable microbial community that was dominated by Prochlorococcus, Synechococcus, and SAR11. However, fine tuning of some metabolic functions that are mainly driven by salinity and temperature was observed. Intriguingly, a tuning divergence occurred between metabolic potential and activity in response to different environmental perturbations. Our results indicate that metabolic tuning is an important mechanism for sustaining the stability of microbial communities in oligotrophic oceans. In addition, integrated meta-omics provides a powerful tool to comprehensively understand microbial behavior and function in the ocean. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-021-00119-6.

9.
Appl Environ Microbiol ; 87(20): e0098621, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319792

RESUMEN

The twilight zone (from the base of the euphotic zone to the depth of 1,000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity directly associated with POC remineralization in this chronically understudied realm. Here, we characterized the microbial community proteomes of POC samples collected from the twilight zone of three contrasting sites in the Northwest Pacific Ocean using a metaproteomic approach. The particle-attached bacteria from Alteromonadales, Rhodobacterales, and Enterobacterales were the primary POC remineralizers. Hydrolytic enzymes, including proteases and hydrolases, that degrade proteinaceous components and polysaccharides, the main constituents of POC, were abundant and taxonomically associated with these bacterial groups. Furthermore, identification of diverse species-specific transporters and metabolic enzymes implied niche specialization for nutrient acquisition among these bacterial groups. Temperature was the main environmental factor driving the active bacterial groups and metabolic processes, and Enterobacterales replaced Alteromonadales as the predominant group under low temperature. This study provides insight into the key bacteria and metabolic processes involved in POC remineralization, and niche complementarity and species substitution among bacterial groups are critical for efficient POC remineralization in the twilight zone. IMPORTANCE The ocean's twilight zone is a critical zone where more than 70% of the sinking particulate organic carbon (POC) is remineralized. Therefore, the twilight zone determines the size of biological carbon storage in the ocean and regulates the global climate. Prokaryotes are major players that govern remineralization of POC in this region. However, knowledge of microbial community structure and metabolic activity is still lacking. This study unveiled microbial communities and metabolic activities of POC samples collected from the twilight zone of three contrasting environments in the Northwest Pacific Ocean using a metaproteomic approach. Alteromonadales, Rhodobacterales, and Enterobacterales were the major remineralizers of POC. They excreted diverse species-specific hydrolytic enzymes to split POC into solubilized POC or dissolved organic carbon. Temperature played a crucial role in regulating the community composition and metabolism. Furthermore, niche complementarity or species substitution among bacterial groups guaranteed the efficient remineralization of POC in the twilight zone.


Asunto(s)
Carbono/metabolismo , Microbiota , Agua de Mar/microbiología , Bacterias/aislamiento & purificación , Proteínas Bacterianas/análisis , Océano Pacífico , Material Particulado , Proteoma
10.
Cell Discov ; 7(1): 11, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33619264

RESUMEN

Although there are various Conus species with publicly available transcriptome and proteome data, no genome assembly has been reported yet. Here, using Chinese tubular cone snail (C. betulinus) as a representative, we sequenced and assembled the first Conus genome with original identification of 133 genome-widely distributed conopeptide genes. After integration of our genomics, transcriptomics, and peptidomics data in the same species, we established a primary genetic central dogma of diverse conopeptides, assuming a rough number ratio of ~1:1:1:10s for the total genes: transcripts: proteins: post-translationally modified peptides. This ratio may be special for this worm-hunting Conus species, due to the high diversity of various Conus genomes and the big number ranges of conopeptide genes, transcripts, and peptides in previous reports of diverse Conus species. Only a fraction (45.9%) of the identified conotopeptide genes from our achieved genome assembly are transcribed with transcriptomic evidence, and few genes individually correspond to multiple transcripts possibly due to intraspecies or mutation-based variances. Variable peptide processing at the proteomic level, generating a big diversity of venom conopeptides with alternative cleavage sites, post-translational modifications, and N-/C-terminal truncations, may explain how the 133 genes and ~123 transcripts can generate thousands of conopeptides in the venom of individual C. betulinus. We also predicted many conopeptides with high stereostructural similarities to the putative analgesic ω-MVIIA, addiction therapy AuIB and insecticide ImI, suggesting that our current genome assembly for C. betulinus is a valuable genetic resource for high-throughput prediction and development of potential pharmaceuticals.

11.
Rapid Commun Mass Spectrom ; 34(10): e8733, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32031715

RESUMEN

High specificity of trypsin is a prerequisite for accurate identification and quantification of proteins in shotgun proteomics. It is important to minimize nonspecific enzymatic cleavages during proteomic sample preparation. METHODS: In this study, protein extraction and trypsin digestion conditions were extensively evaluated using the less-complex Escherichia coli lysates to improve the sensitivity of detecting low-abundance nonspecific peptides by liquid chromatography/tandem mass spectrometry. RESULTS: Trypsin digestion buffers and digestion times were proved to have a significant effect on nonspecific cleavages. The triethylammonium bicarbonate buffer induces significantly lower nonspecific cleavages than the other two buffers, but a freshly prepared urea solution does not induce more than sodium dodecyl sulfate. Because prolonged trypsin digestion resulted in a considerable number of nonspecific cleavages, an optimized 2-h protocol was developed with 45.2% less semispecific tryptic peptides but 18.5% more unmodified peptides identified than the commonly used 16-h protocol. CONCLUSIONS: The significant decrease in nonspecific cleavages and artificial modifications improves the accuracy of protein quantification and the identification of low-abundance proteins, and it is especially useful for studying protein posttranslational modifications. For trypsin digestion, the proposed 2-h protocol can potentially be a replacement for the traditional 16-h protocol.


Asunto(s)
Péptidos/análisis , Proteínas/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Tripsina/química , Células A549 , Animales , Bovinos , Cromatografía Liquida/métodos , Escherichia coli/química , Proteínas de Escherichia coli/análisis , Humanos , Proteolisis
12.
J Proteome Res ; 19(1): 401-408, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31773964

RESUMEN

The mission of the Chromosome-Centric Human Proteome Project (C-HPP) to discover missing proteins (MPs) has become increasingly difficult due to the remaining low-abundance, high-hydrophobicity, or low-molecular-weight MPs. We have reported two approaches to resolve these identification problems for the low-abundance and high-hydrophobicity MPs, respectively. In this study, to improve the identification of low-abundance MPs with high hydrophobicity, we combined two approaches and obtained MPs from several different cancer cell lines. Their membrane fractions were isolated by ultracentrifugation, and the low-abundance proteins were enriched at the protein level with the ProteoMiner kit. After that, the peptides from the enriched proteins were separated by high concentrations of organic solvents according to their hydrophobicity as the first dimension of separation at the peptide level, and the second and third dimensions of separation involved a high pH reversed-phase and an acid reversed-phase column, respectively. In total, 16 MPs (at least two non-nested unique peptides with ≥9 amino acids) with 61 unique peptides were identified from four human cancer cell lines, including 2, 8, 2, and 7 MPs from HeLa, HCT116, SNU-1, and HepG2 cells, respectively. Furthermore, all MPs were verified with two non-nested unique peptides through parallel reaction monitoring (PRM) by matching the peptides with their chemically synthesized peptides. Interestingly, two additional MPs were verified from the same cell line by PRM assay, although the two non-nested unique peptides with ≥9 amino acids for each MP were identified from different MS injections or cell lines by data-dependent acquisition (DDA). Thus, a total of 18 MPs were dug out in this study. The data are available via ProteomeXchange (PXD014058) and PeptideAtlas (PASS01388).


Asunto(s)
Proteínas/análisis , Proteínas/química , Proteómica/métodos , Línea Celular Tumoral , Electroforesis en Gel de Poliacrilamida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas/métodos
13.
J Proteome Res ; 18(12): 4180-4188, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31592669

RESUMEN

Identifying more missing proteins (MPs) is an important mission of C-HPP. With the number of identified MPs being attenuated year by year (2,949 to 2,129 MPs from 2016 to 2019), we have realized that the difficulty of exploring the remaining MPs is a challenge in technique. Herein, we propose a comprehensive strategy to effectively enrich, separate, and identify proteins with low molecular weights, aiming at the discovery of MPs. Basically, a protein extract from human placenta was passed through a C18 SPE column, and the bound proteins that were eluted were further separated with an SDS-PAGE gel or a 50 kDa cutoff filter. The separated proteins were subjected to trypsin digestion, and the MS/MS signals were searched against data sets with two different digestion modes (full-trypsin and semitrypsin). The strategy was adopted, resulting in the identification of 4 MPs with 8 unique peptides (≥2 non-nested unique peptides with ≥9 amino acids). Importantly, the identification of 6 out of 8 of the unique peptides derived from the MPs was further supported by parallel reaction monitoring, which confirmed the identification of 3 MPs from human placenta tissues (Q6NT89: TMF-regulated nuclear protein 1; A0A183: late cornified envelope protein 6A; and Q6UWQ7: insulin growth factor-like family member 2, mapped to chromosomes 1, 1, and 19, respectively). The three proteins ranged in length from 80 aa to 227 aa. The study not only establishes a feasible strategy for analyzing proteins with low molecular weights but also fills a small part of a large gap in the list of MPs. The data obtained in this study are available via ProteomeXchange (PXD014083) and PeptideAtlas (PASS01389).


Asunto(s)
Péptidos/análisis , Placenta/química , Proteómica/métodos , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Peso Molecular , Péptidos/química , Embarazo , Espectrometría de Masas en Tándem/métodos , Tripsina/química
14.
Amino Acids ; 51(2): 345-353, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30353357

RESUMEN

The diversity of defensive peptides from skin of amphibians has been demonstrated. These peptides may have resulted from the diversity of microorganisms encountered by amphibians. In this study, peptidomics and RNA sequencing analyses were used to study deeply the defensive peptides of the skin secretions from Polypedates megacephalus. A total of 99 defensive peptides have been identified from the skin secretions. Among these peptides, 3 peptides were myotropical peptides and 34 peptides classified as protease inhibitor peptides. 5 lectins, 8 antimicrobial peptides, 26 immunomodulatory peptides, 10 wound-healing peptides and 13 other bioactive peptides were identified as belonging to the innate immune system. One antimicrobial peptide Pm-amp1 showed high similarity to antimicrobial peptide marcin-18. This peptide was successfully expressed and showed moderate activity against four tested strains. These identified peptides highlight the extensive diversity of defensive peptides and provide powerful tools to understand the defense weapon of frog.


Asunto(s)
Proteínas Anfibias/química , Proteínas Anfibias/genética , Venenos de Anfibios/química , Venenos de Anfibios/genética , Anuros/fisiología , Piel/química , Proteínas Anfibias/aislamiento & purificación , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Femenino , Factores Inmunológicos/genética , Factores Inmunológicos/aislamiento & purificación , Lectinas/genética , Lectinas/aislamiento & purificación , Masculino , Espectrometría de Masas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Análisis de Secuencia de Proteína , Análisis de Secuencia de ARN , Secuenciación del Exoma
15.
J Proteome Res ; 17(12): 4152-4159, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30362765

RESUMEN

Following an enormous effort by the global scientific community coordinated by HUPO's Human Proteome Project, the number of proteins without high-quality MS or other evidence (colloquially termed missing proteins) has substantially decreased; however, some highly hydrophobic MPs remain on the list. We believe that efficient peptide separation is an approach that can be used to improve the identification of these hydrophobic MPs. We propose that peptides prepared from the membrane fractions of human cell lines and placental tissue can be well separated from hydrophilic peptides in organic solvents at high concentrations due to the precipitation of hydrophilic peptides with lower solubility. Using a combination strategy of peptide separation in 98% acetonitrile prior to traditional 2D reverse-phase liquid chromatography, more hydrophobic peptides were detected in the supernatants of the organic solvent extractions than were found in the pellets. When this strategy was adopted, 30 MPs (≥2 non-nested unique peptides with ≥9 amino acids) with 114 unique peptides were identified at protein false discovery rate (FDR) < 1%, including 7, 12, and 13 MPs obtained from membrane preparations derived from K562, HeLa cells, and human placenta, respectively. Of the 30 MPs identified in this study, 19 were categorized as membrane proteins or extracellular matrix proteins. Furthermore, 20 were verified to possess two non-nested unique peptides through parallel reaction monitoring with the corresponding chemically synthesized peptides. The use of organic solvents at high concentrations was shown to be an efficient way to improve the exploration of hydrophobic MPs. The data obtained in this study are available via ProteomeXchange (PXD010630) and PeptideAtlas (PASS01218).


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/análisis , Péptidos/análisis , Línea Celular , Femenino , Células HeLa , Humanos , Células K562 , Péptidos/aislamiento & purificación , Placenta/citología , Embarazo , Proteómica/métodos , Solventes/química
16.
Anal Chem ; 90(21): 12366-12371, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30260629

RESUMEN

Currently, the commercial reagents for isobaric peptides labeling (TMT and iTRAQ) have some drawbacks, such as high cost in experiments, especially in quantitation for the modified peptides, and inconvenient handling for variable sizes of samples. Herein, we developed a set of 10-plex isobaric tags (IBT) with high stability and low cost. The labeled peptides were sensitively detected on Orbitrap Q Exactive MS with an MS2 resolution of 35 000 at 30% NCE, while the peptides were efficiently labeled over 97% by IBT at a ratio of 10:1 of reagent/peptide (w/w) in 200 mM TEAB buffer for 2 h. The IBT labeling was demonstrated with a wide dynamic range of 50-fold without obvious matrix effects on quantification. Importantly, there was little quantification bias found among the individual IBT tags, indicating that the peptides labeled by different tags were quantitatively comparable. The IBT 10-plex reagents were applied for dynamically monitoring the quantitative responses of phosphoproteome stimulated by EGF treatment in HeLa cells. In total, 5 361 unique phosphopeptides were identified, which reached a similar conclusion as others reported. The IBT reagents were therefore experimentally proven as a new type of reagents for isobaric peptides labeling and useful in a large quantity peptides of quantitative proteomics.


Asunto(s)
Indicadores y Reactivos/química , Marcaje Isotópico , Péptidos/análisis , Proteómica , Células HeLa , Humanos , Estructura Molecular
17.
J Proteome Res ; 16(12): 4330-4339, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960076

RESUMEN

Human Proteome Project (HPP) aims at mapping entire human proteins with a systematic effort upon all the emerging techniques, which would enhance understanding of human biology and lay a foundation for development of medical applications. Until now, 2563 missing proteins (MPs, PE2-4) are still undetected even using the most sensitive approach of protein detection. Herein, we propose that enrichment of low-abundance proteins benefits MPs finding. ProteoMiner is an equalizing technique by reducing high-abundance proteins and enriching low-abundance proteins in biological liquids. With triton X-100/TBS buffer extraction, ProteoMiner enrichment, and peptide fractionation, 20 MPs (at least two non-nested unique peptides with more than eight a.a. length) with 60 unique peptides were identified from four human tissues including eight membrane/secreted proteins and five nucleus proteins. Then 15 of them were confirmed with two non-nested unique peptides (≥9 a.a.) identified by matching well with their chemically synthetic peptides in PRM assay. Hence, these results demonstrated ProteoMiner as a powerful means in discovery of MPs.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Fraccionamiento Químico , Humanos , Métodos , Octoxinol
18.
Toxins (Basel) ; 8(10)2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27782050

RESUMEN

Scorpion venom is deemed to contain many toxic peptides as an important source of natural compounds. Out of the two hundred proteins identified in Mesobuthus martensii (M. martensii), only a few peptide toxins have been found so far. Herein, a combinational approach based upon RNA sequencing and Liquid chromatography-mass spectrometry/mass spectrometry (LC MS/MS) was employed to explore the venom peptides in M. martensii. A total of 153 proteins were identified from the scorpion venom, 26 previously known and 127 newly identified. Of the novel toxins, 97 proteins exhibited sequence similarities to known toxins, and 30 were never reported. Combining peptidomic and transcriptomic analyses, the peptide sequence of BmKKx1 was reannotated and four disulfide bridges were confirmed within it. In light of the comparison of conservation and variety of toxin amino acid sequences, highly conserved and variable regions were perceived in 24 toxins that were parts of two sodium channel and two potassium channel toxins families. Taking all of this evidences together, the peptidomic analysis on M. martensii indeed identified numerous novel scorpion peptides, expanded our knowledge towards the venom diversity, and afforded a set of pharmaceutical candidates.


Asunto(s)
Proteínas de Artrópodos/química , Péptidos/química , Venenos de Escorpión/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Escorpiones , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
19.
Nat Commun ; 7: 13107, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708285

RESUMEN

Snakes have numerous features distinctive from other tetrapods and a rich history of genome evolution that is still obscure. Here, we report the high-quality genome of the five-pacer viper, Deinagkistrodon acutus, and comparative analyses with other representative snake and lizard genomes. We map the evolutionary trajectories of transposable elements (TEs), developmental genes and sex chromosomes onto the snake phylogeny. TEs exhibit dynamic lineage-specific expansion, and many viper TEs show brain-specific gene expression along with their nearby genes. We detect signatures of adaptive evolution in olfactory, venom and thermal-sensing genes and also functional degeneration of genes associated with vision and hearing. Lineage-specific relaxation of functional constraints on respective Hox and Tbx limb-patterning genes supports fossil evidence for a successive loss of forelimbs then hindlimbs during snake evolution. Finally, we infer that the ZW sex chromosome pair had undergone at least three recombination suppression events in the ancestor of advanced snakes. These results altogether forge a framework for our deep understanding into snakes' history of molecular evolution.


Asunto(s)
Evolución Biológica , Elementos Transponibles de ADN , Serpientes/anatomía & histología , Serpientes/genética , Animales , Linaje de la Célula , Evolución Molecular , Femenino , Miembro Anterior , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma , Miembro Posterior , Lagartos/genética , Masculino , Filogenia , Recombinación Genética , Cromosomas Sexuales , Transcriptoma
20.
Gigascience ; 5: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27087938

RESUMEN

BACKGROUND: The venom of predatory marine cone snails mainly contains a diverse array of unique bioactive peptides commonly referred to as conopeptides or conotoxins. These peptides have proven to be valuable pharmacological probes and potential drugs because of their high specificity and affinity to important ion channels, receptors and transporters of the nervous system. Most previous studies have focused specifically on the conopeptides from piscivorous and molluscivorous cone snails, but little attention has been devoted to the dominant vermivorous species. RESULTS: The vermivorous Chinese tubular cone snail, Conus betulinus, is the dominant Conus species inhabiting the South China Sea. The transcriptomes of venom ducts and venom bulbs from a variety of specimens of this species were sequenced using both next-generation sequencing and traditional Sanger sequencing technologies, resulting in the identification of a total of 215 distinct conopeptides. Among these, 183 were novel conopeptides, including nine new superfamilies. It appeared that most of the identified conopeptides were synthesized in the venom duct, while a handful of conopeptides were identified only in the venom bulb and at very low levels. CONCLUSIONS: We identified 215 unique putative conopeptide transcripts from the combination of five transcriptomes and one EST sequencing dataset. Variation in conopeptides from different specimens of C. betulinus was observed, which suggested the presence of intraspecific variability in toxin production at the genetic level. These novel conopeptides provide a potentially fertile resource for the development of new pharmaceuticals, and a pathway for the discovery of new conotoxins.


Asunto(s)
Conotoxinas/genética , Caracol Conus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Transcriptoma , Secuencia de Aminoácidos , Animales , China , Caracol Conus/clasificación , Perfilación de la Expresión Génica/métodos , Variación Genética , Datos de Secuencia Molecular , Océanos y Mares , Péptidos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...