Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(1): e2309645, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018327

RESUMEN

The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.

2.
Chem Sci ; 14(43): 12056-12067, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969597

RESUMEN

3D-oriented metal-organic framework (MOF) films and patterns have recently emerged as promising platforms for sensing and photonic applications. These oriented polycrystalline materials are typically prepared by heteroepitaxial growth from aligned inorganic nanostructures and display anisotropic functional properties, such as guest molecule alignment and polarized fluorescence. However, to identify suitable conditions for the integration of these 3D-oriented MOF superstructures into functional devices, the effect of water (gaseous and liquid) on different frameworks should be determined. We note that the hydrolytic stability of these heteroepitaxially grown MOF films is currently unexplored. In this work, we present an in-depth analysis of the structural evolution of aligned 2D and 3D Cu-based MOFs grown from Cu(OH)2 coatings. Specifically, 3D-oriented Cu2L2 and Cu2L2DABCO films (L = 1,4-benzenedicarboxylate, BDC; biphenyl-4,4-dicarboxylate, BPDC; DABCO = 1,4-diazabicyclo[2.2.2]octane) were exposed to 50% relative humidity (RH), 80% RH and liquid water. The combined use of X-ray diffraction, infrared spectroscopy, and scanning electron microscopy shows that the sensitivity towards humid environments critically depends on the presence of the DABCO pillar ligand. While oriented films of 2D MOF layers stay intact upon exposure to all levels of humidity, hydrolysis of Cu2L2DABCO is observed. In addition, we report that in environments with high water content, 3D-oriented Cu2(BDC)2DABCO recrystallizes as 3D-oriented Cu2(BDC)2. The heteroepitaxial MOF-to-MOF transformation mechanism was studied with in situ synchrotron experiments, time-resolved AFM measurements, and electron diffraction. These findings provide valuable information on the stability of oriented MOF films for their application in functional devices and highlight the potential for the fabrication of 3D-oriented superstructures via MOF-to-MOF transformations.

3.
Adv Mater ; 35(25): e2211478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36934320

RESUMEN

Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal-organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X-ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH)2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br2 BDC) into a copper-based MOF Cu2 L2 DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane; L = BDC/Br2 BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.

4.
Chem Sci ; 13(40): 11869-11877, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36320901

RESUMEN

Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.

5.
Adv Mater ; 34(21): e2106607, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34866253

RESUMEN

Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Puntos Cuánticos , Anticuerpos , Luminiscencia , Estructuras Metalorgánicas/química , Puntos Cuánticos/química
6.
J Am Chem Soc ; 143(49): 20916-20926, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34855393

RESUMEN

Synthesis of covalent organic framework (COF) thin films on different supports with high crystallinity and porosity is crucial for their potential applications. We have designed a new synchronized methodology, residual crystallization (RC), to synthesize sub 10 nm COF thin films. These residual crystallized COF thin films showcase high surface area, crystallinity, and conductivity at room temperature. We have used interfacial crystallization (IC) as a rate-controlling tool for simultaneous residual crystallization. We have also diversified the methodology of residual crystallization by utilizing two different crystallization pathways: fiber-to-film (F-F) and sphere-to-film (S-F). In both cases, we could obtain continuous COF thin films with high crystallinity and porosity grown on various substrates (the highest surface area of a TpAzo COF thin film being 2093 m2 g-1). Precise control over the crystallization allows the synthesis of macroscopic defect-free sub 10 nm COF thin films with a minimum thickness of ∼1.8 nm. We have synthesized two COF thin films (TpAzo and TpDPP) using F-F and S-F pathways on different supports such as borosilicate glass, FTO, silicon, Cu, metal, and ITO. Also, we have investigated the mechanism of the growth of these thin films on various substrates with different wettability. Further, a hydrophilic support (glass) was used to grow the thin films in situ for four-probe system device fabrication. All residual crystallized COF thin films exhibit outstanding conductivity values. We could obtain a conductivity of 3.7 × 10-2 mS cm-1 for the TpAzo film synthesized by S-F residual crystallization.

7.
Angew Chem Int Ed Engl ; 59(21): 8123-8127, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32059061

RESUMEN

Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (α1-antitrypsin, AAT) in ZIF-8. The in situ kinetics of nucleation, growth, and crystallization of BSA@ZIF-8 were studied by small-angle X-ray scattering. By controlling the injection time of ethanol, the particle growth could be quenched by ethanol-induced crystallization from amorphous particles to ZIF-8 crystals. The particle size of the biocomposite was tuned in the 40-100 nm range by varying residence time prior to introduction of ethanol. As a proof-of-concept, this procedure was used for the encapsulation of AAT in ZIF-8. Upon release of the biotherapeutic from the composite, the trypsin inhibitor function of AAT was preserved.


Asunto(s)
Materiales Biocompatibles/química , Zeolitas/química , Animales , Bovinos , Cristalización , Portadores de Fármacos/química , Liberación de Fármacos , Etanol/química , Tamaño de la Partícula , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...