Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(9): 630, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749143

RESUMEN

Glioblastoma (GBM) is a deadly and the most common primary brain tumor in adults. Due to their regulation of a high number of mRNA transcripts, microRNAs (miRNAs) are key molecules in the control of biological processes and are thereby promising therapeutic targets for GBM patients. In this regard, we recently reported miRNAs as strong modulators of GBM aggressiveness. Here, using an integrative and comprehensive analysis of the TCGA database and the transcriptome of GBM biopsies, we identified three critical and clinically relevant miRNAs for GBM, miR-17-3p, miR-222, and miR-340. In addition, we showed that the combinatorial modulation of three of these miRNAs efficiently inhibited several biological processes in patient-derived GBM cells of all these three GBM subtypes (Mesenchymal, Proneural, Classical), induced cell death, and delayed tumor growth in a mouse tumor model. Finally, in a doxycycline-inducible model, we observed a significant inhibition of GBM stem cell viability and a significant delay of orthotopic tumor growth. Collectively, our results reveal, for the first time, the potential of miR-17-3p, miR-222 and miR-340 multi-targeting as a promising therapeutic strategy for GBM patients.


Asunto(s)
Glioblastoma , MicroARNs , Adulto , Humanos , Animales , Ratones , MicroARNs/genética , Glioblastoma/genética , Agresión , Biopsia , Muerte Celular , Modelos Animales de Enfermedad
2.
Drug Resist Updat ; 63: 100852, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35849943

RESUMEN

NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Citratos/uso terapéutico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Oncogenes , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética
3.
Drug Resist Updat ; 59: 100790, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34924279

RESUMEN

Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Citratos/uso terapéutico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Fosfatidilinositol 3-Quinasas/uso terapéutico , Sodio/uso terapéutico
4.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205414

RESUMEN

Citrate plays a central role in cancer cells' metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid ß-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.


Asunto(s)
Ácido Cítrico/metabolismo , Neoplasias/metabolismo , Animales , Humanos , Oxidación-Reducción , Microambiente Tumoral , Efecto Warburg en Oncología
5.
Adv Nutr ; 12(4): 1461-1480, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-33530098

RESUMEN

The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.


Asunto(s)
Neoplasias , Autofagia , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Microambiente Tumoral
6.
Biochimie ; 180: 169-177, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33189832

RESUMEN

Current mortality due to the Covid-19 pandemic (approximately 1.2 million by November 2020) demonstrates the lack of an effective treatment. As replication of many viruses - including MERS-CoV - is supported by enhanced aerobic glycolysis, we hypothesized that SARS-CoV-2 replication in host cells (especially airway cells) is reliant upon altered glucose metabolism. This metabolism is similar to the Warburg effect well studied in cancer. Counteracting two main pathways (PI3K/AKT and MAPK/ERK signaling) sustaining aerobic glycolysis inhibits MERS-CoV replication and thus, very likely that of SARS-CoV-2, which shares many similarities with MERS-CoV. The Warburg effect appears to be involved in several steps of COVID-19 infection. Once induced by hypoxia, the Warburg effect becomes active in lung endothelial cells, particularly in the presence of atherosclerosis, thereby promoting vasoconstriction and micro thrombosis. Aerobic glycolysis also supports activation of pro-inflammatory cells such as neutrophils and M1 macrophages. As the anti-inflammatory response and reparative process is performed by M2 macrophages reliant on oxidative metabolism, we speculated that the switch to oxidative metabolism in M2 macrophages would not occur at the appropriate time due to an uncontrolled pro-inflammatory cascade. Aging, mitochondrial senescence and enzyme dysfunction, AMPK downregulation and p53 inactivation could all play a role in this key biochemical event. Understanding the role of the Warburg effect in COVID-19 can be essential to developing molecules reducing infectivity, arresting endothelial cells activation and the pro-inflammatory cascade.


Asunto(s)
COVID-19/virología , Glucólisis/fisiología , Inflamación , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología
7.
Oncogene ; 39(17): 3604-3610, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060422

RESUMEN

The beneficial effects of lipoic acid (LA) in cancer treatment have been well documented in the last decade. Indeed, LA exerts crucial antiproliferative effects by reducing breast cancer cell viability, cell cycle progression and the epithelial-to-mesenchymal transition (EMT). However, the mechanisms of action (MOA) underlying these antiproliferative effects remain to be elucidated. Recently, we demonstrated that LA decreases breast cancer cell proliferation by inhibiting IGF-1R maturation via the downregulation of the proprotein convertase furin. The aim of the present study was to investigate the MOA by which LA inhibits furin expression in estrogen receptor α (ERα) (+) and (-) breast cancer cell lines. We unveil that LA exerts a pro-oxidant effect on these cell lines, the resulting reactive oxygen species (ROS) generated being responsible for the reduction in the expression of the major (CREB) protein. This transcription factor is overexpressed in many types of cancers and regulates the expression of furin in breast cancer cells independently of ERα, as evidenced herein by the inhibition of furin expression following CREB silencing. Consequently, our findings expose for the first time the complete MOA of LA via the CREB/furin axis leading to inhibition of breast cancer cell proliferation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Furina/metabolismo , Proteínas de Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptor IGF Tipo 1/metabolismo , Ácido Tióctico/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7
8.
Br J Cancer ; 122(6): 885-894, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988347

RESUMEN

BACKGROUND: Breast cancer is the second most common cancer in the world. Despite advances in therapies, the mechanisms of resistance remain the underlying cause of morbidity and mortality. Lipoic acid (LA) is an antioxidant and essential cofactor in oxidative metabolism. Its potential therapeutic effects have been well documented, but its mechanisms of action (MOA) are not fully understood. METHODS: The aim of this study is to validate the inhibitory LA effect on the proliferation of various breast cancer cell lines and to investigate the MOA that may be involved in this process. We tested LA effects by ex vivo studies on fresh human mammary tumour samples. RESULTS: We demonstrate that LA inhibits the proliferation and Akt and ERK signalling pathways of several breast cancer cells. While searching for upstream dysregulations, we discovered the loss of expression of IGF-1R upon exposure to LA. This decrease is due to the downregulation of the convertase, furin, which is implicated in the maturation of IGF-1R. Moreover, ex vivo studies on human tumour samples showed that LA significantly decreases the expression of the proliferation marker Ki67. CONCLUSION: LA exerts its anti-proliferative effect by inhibiting the maturation of IGF-1R via the downregulation of furin.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Furina/uso terapéutico , Receptor IGF Tipo 1/antagonistas & inhibidores , Ácido Tióctico/uso terapéutico , Neoplasias de la Mama/patología , Regulación hacia Abajo , Femenino , Furina/farmacología , Humanos , Ácido Tióctico/farmacología , Transfección
9.
Cancer Lett ; 471: 125-134, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31830561

RESUMEN

ACLY links energy metabolism provided by catabolic pathways to biosynthesis. ACLY, which has been found to be overexpressed in many cancers, converts citrate into acetyl-CoA and OAA. The first of these molecules supports protein acetylation, in particular that of histone, and de novo lipid synthesis, and the last one sustains the production of aspartate (required for nucleotide and polyamine synthesis) and the regeneration of NADPH,H+(consumed in redox reaction and biosynthesis). ACLY transcription is promoted by SREBP1, its activity is stabilized by acetylation and promoted by AKT phosphorylation (stimulated by growth factors and glucose abundance). ACLY plays a pivotal role in cancer metabolism through the potential deprivation of cytosolic citrate, a process promoting glycolysis through the enhancement of the activities of PFK 1 and 2 with concomitant activation of oncogenic drivers such as PI3K/AKT which activate ACLY and the Warburg effect in a feed-back loop. Pending the development of specific inhibitors and tailored methods for identifying which specific metabolism is involved in the development of each tumor, ACLY could be targeted by inhibitors such as hydroxycitrate and bempedoic acid. The administration of citrate at high level mimics a strong inhibition of ACLY and could be tested to strengthen the effects of current therapies.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Neoplasias/enzimología , ATP Citrato (pro-S)-Liasa/química , Acetilcoenzima A/metabolismo , Animales , Humanos , Neoplasias/metabolismo , Ácido Oxaloacético/metabolismo , Relación Estructura-Actividad
10.
Trends Biochem Sci ; 44(6): 490-501, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30655165

RESUMEN

Cell cycle progression and division is regulated by checkpoint controls and sequential activation of cyclin-dependent kinases (CDKs). Understanding of how these events occur in synchrony with metabolic changes could have important therapeutic implications. For biosynthesis, cancer cells enhance glucose and glutamine consumption. Inactivation of pyruvate kinase M2 (PKM2) promotes transcription in G1 phase. Glutamine metabolism supports DNA replication in S phase and lipid synthesis in G2 phase. A boost in glycolysis and oxidative metabolism can temporarily furnish more ATP when necessary (G1/S transition, segregation of chromosomes). Recent studies have shown that a few metabolic enzymes [PKM2, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3), GAPDH] also periodically translocate to the nucleus and oversee cell cycle regulators or oncogene expression (c-Myc). Targeting these metabolic enzymes could increase the response to CDK inhibitors (CKIs).


Asunto(s)
Ciclo Celular , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Quinasas/metabolismo , Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
11.
Cancer Cell Int ; 18: 175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455595

RESUMEN

Gao-Min Liu and Yao-Ming Zhang recently published a review entitled «Targeting FBPase is an emerging novel approach for cancer therapy¼ (Liu and Zhang in Cancer Cell Int 18:36, 2018). In this paper, the authors highlighted how the down regulation or inactivation of FBPase, a rate limiting enzyme of gluconeogenesis, can promote the Warburg effect and cancer growth. In contrast, activation of this enzyme demonstrates anti-cancer effects and may appear as emerging novel approach for cancer therapy. Among the potential activators of FBP listed by Liu and Zhang, citrate was surprisingly not mentioned although it is an activator of FBPase, also demonstrating various anti-cancer effects in pre-clinical studies. Thus, citrate should be tested as a new therapeutic strategy, in particular in clinical studies.

14.
Drug Resist Updat ; 38: 1-11, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29857814

RESUMEN

Cancer cells employ both conventional oxidative metabolism and glycolytic anaerobic metabolism. However, their proliferation is marked by a shift towards increasing glycolytic metabolism even in the presence of O2 (Warburg effect). HIF1, a major hypoxia induced transcription factor, promotes a dissociation between glycolysis and the tricarboxylic acid cycle, a process limiting the efficient production of ATP and citrate which otherwise would arrest glycolysis. The Warburg effect also favors an intracellular alkaline pH which is a driving force in many aspects of cancer cell proliferation (enhancement of glycolysis and cell cycle progression) and of cancer aggressiveness (resistance to various processes including hypoxia, apoptosis, cytotoxic drugs and immune response). This metabolism leads to epigenetic and genetic alterations with the occurrence of multiple new cell phenotypes which enhance cancer cell growth and aggressiveness. In depth understanding of these metabolic changes in cancer cells may lead to the development of novel therapeutic strategies, which when combined with existing cancer treatments, might improve their effectiveness and/or overcome chemoresistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Metabolismo Energético/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Resistencia a Antineoplásicos/genética , Metabolismo Energético/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral
16.
Drug Resist Updat ; 29: 47-53, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27912843

RESUMEN

Proliferating cells reduce their oxidative metabolism and rely more on glycolysis, even in the presence of O2 (Warburg effect). This shift in metabolism reduces citrate biosynthesis and diminishes intracellular acidity, both of which promote glycolysis sustaining tumor growth. Because citrate is the donor of acetyl-CoA, its reduced production favors a deacetylation state of proteins favoring resistance to apoptosis and epigenetic changes, both processes contributing to tumor aggressiveness. Citrate levels could be monitored as an indicator of cancer aggressiveness (as already shown in human prostate cancer) and/or could serve as a biomarker for response to therapy. Strategies aiming to increase cytosolic citrate should be developed and tested in humans, knowing that experimental studies have shown that administration of citrate and/or inhibition of ACLY arrest tumor growth, inhibit the expression of the key anti-apoptotic factor Mcl-1, reverse cell dedifferentiation and increase sensibility to cisplatin.


Asunto(s)
Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ácido Cítrico/metabolismo , Glucólisis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , ATP Citrato (pro-S)-Liasa/antagonistas & inhibidores , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Ácido Cítrico/uso terapéutico , Ciclo del Ácido Cítrico/genética , Epigénesis Genética , Glucólisis/genética , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación Oxidativa/efectos de los fármacos , Pronóstico
17.
Oncotarget ; 6(39): 41566-81, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26431164

RESUMEN

The recently described oncogene ZNF217 belongs to a chromosomal region that is frequently amplified in human cancers. Recent findings have revealed that alternative mechanisms such as epigenetic regulation also govern the expression of the encoded ZNF217 protein. Newly discovered molecular functions of ZNF217 indicate that it orchestrates complex intracellular circuits as a new key regulator of tumorigenesis. In this review, we focus on recent research on ZNF217-driven molecular functions in human cancers, revisiting major hallmarks of cancer and highlighting the downstream molecular targets and signaling pathways of ZNF217. We also discuss the exciting translational medicine investigating ZNF217 expression levels as a new powerful biomarker, and ZNF217 as a candidate target for future anti-cancer therapies.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/metabolismo , Neoplasias/metabolismo , Transactivadores/metabolismo , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/patología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Invasividad Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Ribonucleósidos/uso terapéutico , Transducción de Señal , Transactivadores/genética
18.
J Ovarian Res ; 8: 36, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26063499

RESUMEN

BACKGROUND: Ovarian carcinoma is the leading cause of death from gynecological cancer because there is risk of chemoresistance. As previously demonstrated in our laboratory, Alpha-lipoic acid (LA), a co-factor for metabolic enzymes, suppresses the tumor growth. In this study, we have researched the mechanisms that are responsible for the activity of LA. METHODS: We have studied the mechanisms of LA in two ovarian cancer cell lines, a cisplatin sensitive one, IGROV1 and its resistant counterpart, IGROV1-R10. These cells have been exposed to lipoic acid at various concentrations. Cell proliferation, cell cycle repartition and nuclear staining with DAPI were recorded. Western blot analyses were performed to detect various proteins implied in apoptotic cell death pathways. To investigate the formation of ROS, the oxidation of CM-DCFH2-DA were also determined. FINDINGS: LA suppressed growth proliferation and induced apoptosis in both ovarian cell lines. Moreover, LA provoked a down regulation of two anti-apoptotic proteins, Mcl-1 and Bcl-xL protein and a strong induction of the BH3-only protein Bim. Furthermore, LA induced ROS generation which could be involved in the CHOP induction which is known to activate the Bim translation. CONCLUSIONS: Our results reveal novel actions of LA which could explain the anti-tumoral effects of the LA. Therefore, LA seems to be a promising compound for ovarian cancer treatment.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Carcinoma/tratamiento farmacológico , Proteínas de la Membrana/biosíntesis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Neoplasias Ováricas/tratamiento farmacológico , Proteínas Proto-Oncogénicas/biosíntesis , Proteína bcl-X/biosíntesis , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de la Membrana/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Ácido Tióctico/administración & dosificación , Proteína bcl-X/genética
19.
Biochim Biophys Acta ; 1846(1): 216-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24983675

RESUMEN

Cancer cells cooperate with stromal cells and use their environment to promote tumor growth. Energy production depends on nutrient availability and O2 concentration. Well-oxygenated cells are highly proliferative and reorient the glucose metabolism towards biosynthesis, whereas glutamine oxidation replenishes the TCA cycle coupled with OXPHOS-ATP production. Glucose, glutamine and alanine transformations sustain nucleotide and fatty acid synthesis. In contrast, hypoxic cells slow down their proliferation, enhance glycolysis to produce ATP and reject lactate which is recycled as fuel by normoxic cells. Thus, glucose is spared for biosynthesis and/or for hypoxic cell function. Environmental cells, such as fibroblasts and adipocytes, serve as food donors for cancer cells, which reject waste products (CO2 , H⁺, ammoniac, polyamines…) promoting EMT, invasion, angiogenesis and proliferation. This metabolic-coupling can be considered as a form of commensalism whereby non-malignant cells support the growth of cancer cells. Understanding these cellular cooperations within tumors may be a source of inspiration to develop new anti-cancer agents.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Células del Estroma/metabolismo , Microambiente Tumoral/fisiología , Adipocitos/fisiología , Animales , Proliferación Celular , Humanos , Inmunidad Celular , Neoplasias/inmunología , Oxígeno/metabolismo
20.
Anticancer Res ; 34(2): 973-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24511042

RESUMEN

BACKGROUND: The combination of hydroxycitrate and lipoic acid has been demonstrated by several laboratories to be effective in reducing murine cancer growth. PATIENTS AND METHODS: All patients had failed standard chemotherapy and were offered only palliative care by their referring oncologist. Karnofsky status was between 50 and 80. Life expectancy was estimated to be between 2 and 6 months. Ten consecutive patients with chemoresistant advanced metastatic cancer were offered compassionate metabolic treatment. They were treated with a combination of lipoic acid at 600 mg i.v. (Thioctacid), hydroxycitrate at 500 mg t.i.d. (Solgar) and low-dose naltrexone at 5 mg (Revia) at bedtime. Primary sites were lung carcinoma (n=2), colonic carcinoma (n=2), ovarian carcinoma (n=1), esophageal carcinoma (n=1), uterine sarcoma (n=1), cholangiocarcinoma (n=1), parotid carcinoma (n=1) and unknown primary (n=1). The patients had been heavily pre-treated. One patient had received four lines of chemotherapy, four patients three lines, four patients two lines and one patient had received radiation therapy and chemotherapy. An eleventh patient with advanced prostate cancer resistant to hormonotherapy treated with hydroxycitrate, lipoic acid and anti-androgen is also reported. RESULTS: One patient was unable to receive i.v. lipoic acid and was switched to oral lipoic acid (Tiobec). Toxicity was limited to transient nausea and vomiting. Two patients died of progressive disease within two months. Two other patients had to be switched to conventional chemotherapy combined with metabolic treatment, one of when had a subsequent dramatic tumor response. Disease in the other patients was either stable or very slowly progressive. The patient with hormone-resistant prostate cancer had a dramatic fall in Prostate-Specific Antigen (90%), which is still decreasing. CONCLUSION: These very primary results suggest the lack of toxicity and the probable efficacy of metabolic treatment in chemoresistant advanced carcinoma. It is also probable that metabolic treatment enhances the efficacy of cytotoxic chemotherapy. These results are in line with published animal data. A randomized clinical trial is warranted.


Asunto(s)
Citratos/administración & dosificación , Naltrexona/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Ácido Tióctico/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Adulto , Anciano , Ensayos de Uso Compasivo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...