Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 73(4): 295-312, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36716322

RESUMEN

Particulate matter (PM) is a major primary pollutant emitted during wildland fires that has the potential to pose significant health risks to individuals/communities who live and work in areas impacted by smoke events. Limiting exposure is the principle measure available to mitigate health impacts of smoke and therefore the accurate determination of ambient PM concentrations during wildland fire events is critical to protecting public health. However, monitoring air pollutants in smoke impacted environments has proven challenging in that measurement interferences or sampling conditions can result in both positive and negative artifacts. The EPA has performed research on methods for the measurement of PM2.5 in a series of laboratory-based studies including evaluation in smoke. This manuscript will summarize the results of the laboratory-based evaluation of federal equivalent method (FEM) monitors for PM2.5 with particular attention being given to the Teledyne-API Model T640 PM Mass monitor, as compared to the filter-based federal reference method (FRM). The T640 is an optical-based PM monitor and has been gaining wide use by state and local agencies in monitoring for PM2.5 U.S. National Ambient Air Quality Standards (NAAQS) attainment. At present, the T640 (includes both T640 and T640×) comprises ~44% of the PM2.5 FEM monitors in U.S. regulatory monitoring networks. In addition, the T640 has increasingly been employed for the higher time resolution comparison/evaluation of low-cost PM sensors including during smoke impacted events. Results from controlled non-smoke laboratory studies using generated ammonium sulfate aerosols demonstrated a generally negative T640 measurement artifact that was significantly related to the PM2.5 concentration and particle size distribution. Results from biomass burning chamber studies demonstrated positive and negative artifacts significantly associated with PM2.5 concentration and optical wavelength-dependent absorption properties of the smoke aerosol.Implications: The results detailed in this paper will provide state and local air monitoring agencies with the tools and knowledge to address PM2.5 measurement challenges in areas frequently impacted by wildland fire smoke. The observed large positive and negative artifacts in the T640 PM mass determination have the potential to result in false exceedances of the PM2.5 NAAQS or in the disqualification of monitoring data through an exceptional event designation. In addition, the observed artifacts in smoke impacted air will have a detrimental effect on providing reliable public information when wildfires occur and also in identifying reference measurements for small sensor evaluation studies. Other PM2.5 FEMs such as the BAM-1022 perform better in smoke and are comparable to the filter-based FRM. Care must be taken in choosing high time resolution FEM monitors that will be operated at smoke impacted sites. Accurate methods, such as the FRM and BAM-1022 will reduce the burden of developing and reviewing exceptional event request packages, data loss/disqualification, and provide states with tools to adequately evaluate public exposure risks and provide accurate public health messaging during wildfire/smoke events.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/análisis , Humo/análisis , Sulfato de Amonio , Artefactos , Biomasa , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Aerosoles , Monitoreo del Ambiente/métodos
2.
Atmos Environ X ; 16: 1-17, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36960321

RESUMEN

Wildland fires are a major source of gases and aerosols, and the production, dispersion, and transformation of fire emissions have significant ambient air quality impacts and climate interactions. The increase in wildfire area burned and severity across the United States and Canada in recent decades has led to increased interest in expanding the use of prescribed fires as a forest management tool. While the primary goal of prescribed fire use is to limit the loss of life and property and ecosystem damage by constraining the growth and severity of future wildfires, a potential additional benefit of prescribed fire - reduction in the adverse impacts of smoke production and greenhouse gas (GHG) emissions - has recently gained the interest of land management agencies and policy makers in the United States and other nations. The evaluation of prescribed fire/wildfire scenarios and the potential mitigation of adverse impacts on air quality and GHGs requires fuel layer specific pollutant emission factors (EFs) for fire prone forest ecosystems. Our study addresses this need with laboratory experiments measuring EFs for carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), ethyne (C2H2), formaldehyde (H2CO), formic acid (CH2O2), hydrogen cyanide (HCN), fine particulate matter (PM2.5), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and total reduced sulfur (TRS) for the burning of individual fuel components from three forest ecosystems which account for a large share of wildfire burned area and emissions in the western United States and Canada - Douglas fir, ponderosa pine, and black spruce/jack pine.

3.
Sci Total Environ ; 795: 148872, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328919

RESUMEN

Radiological release incidents can potentially contaminate widespread areas with radioactive materials and decontamination efforts are typically focused on populated areas, which means radionuclides may be left in forested areas for long periods of time. Large wildfires in contaminated forested areas have the potential to reintroduce these radionuclides into the atmosphere and cause exposure to first responders and downwind communities. One important radionuclide contaminant released from radiological incidents is radiocesium (137Cs) due to high yields and its long half-life of 30.2 years. An Eulerian 3D photochemical transport model was used to estimate potential ambient impacts of 137Cs re-emission due to wildfire following hypothetical radiological release scenarios. The Community Multiscale Air Quality (CMAQ) model did well at predicting levels and periods of increased PM2.5 carbon due to wildfire smoke at routine surface monitors in California during the summer of 2016. The model also did well at capturing the extent of the surface mixing layer compared to aerosol lidar measurements. Emissions from a large hypothetical wildfire were introduced into the wildland-urban interface (WUI) impacted by a hypothetical radiological release event. While ambient concentrations tended to be highest near the fire, the highest population committed effective dose equivalent by inhalation to an adult from 137Cs over an hour was downwind where wind flows moved smoke to high population areas. Seasonal variations in meteorology (wind flows) can result in differential population impacts even in the same metropolitan area. Modeled post-incident ambient levels of 137Cs both near these wildfires and further downwind in nearby urban areas were well below levels that would necessitate population evacuation or warrant other protective action recommendations such as shelter-in-place. These results suggest that 1) the modeling system captures local to regional scale transport and levels of PM2.5 from wildfire and 2) first responders and downwind population would not be expected to be at elevated risk from the initial inhalathion exposure of 137Cs re-emission.


Asunto(s)
Contaminantes Atmosféricos , Incendios Forestales , Contaminantes Atmosféricos/análisis , Radioisótopos de Cesio , Monitoreo del Ambiente , Material Particulado/análisis , Humo/análisis
4.
Health Equity ; 3(1): 573-580, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31701082

RESUMEN

Purpose: This article explores the results of community-engaged PhotoVoice research with the Family Tree Clinic (FTC) in St. Paul, MN. FTC has >45 years of experience providing sexual, reproductive, and primary health care, with a central mission of overcoming issues for their patients including those of poverty, oppression, lack of access, and discrimination in meeting health care needs. Methods: This research presents the findings of social justice-inspired PhotoVoice focus groups with patients of the clinic that asked two central questions: "Why do you choose Family Tree Clinic" and "What stands in the way of achieving your goals for your health?" Results: When health equity is a central priority and evident in clinic culture, practices, and policies, patients articulate positive experiences despite real structural and systemic barriers outside the clinic. Conclusion: We offer suggestions for a health equity-oriented approach to clinic care.

5.
J Air Waste Manag Assoc ; 68(11): 1211-1223, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29953328

RESUMEN

If a radiological incident such as a nuclear power plant accident, a radiological dispersal device, or detonation of an improvised nuclear device occurs, significant areas may be contaminated. Initial cleanup priorities would likely focus on populated areas, leaving the forested areas to pass several seasons where the overhead canopy materials would fall to the forest floor. In the event of a wildfire in a radionuclide-contaminated forest, some radionuclides would be emitted in the air while the rest would remain in the ash. This paper reports on a laboratory simulation study that examines the partitioning of cesium-133 (a nonradioactive isotope of cesium) between airborne particulate matter and residual nonentrained ash when pine needles and peat are doped with cesium. Only 1-2.5% of the doped cesium in pine needles was emitted as particulate matter, and most of the cesium was concentrated in the particulate fraction greater than 10 µm in aerodynamic diameter. For peat fires, virtually all of the cesium remained in the ash. The results from this study will be used for modeling efforts to assess potential exposure risks to firefighters and the surrounding public. Implications: There is a potential for emissions of radionuclides such as cesium-137 from a wildfire over a radionuclide-contaminated forest. This paper reports on a laboratory simulation study of a wildfire with two types of biomass doped with nonradioactive cesium. This simulation suggests that only 1-2.5% of the cesium in the biomass will be emitted from the wildfire, while the rest will reside in the residual ash. In this study, pine needles were the only contributor to the air emissions of cesium; duff was not a source of cesium emissions. In this study, cesium emitted from the simulated wildfire was concentrated in the particle sizes larger than 10 µm.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cesio/análisis , Incendios , Material Particulado/análisis , Tamaño de la Partícula
6.
Environ Sci Technol ; 41(12): 4317-25, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17626431

RESUMEN

Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke forecasts, and source apportionments. This study investigates the evolution of gaseous and particulate emission and combustion efficiency by burning wildland fuels in a laboratory combustion facility. Emission factors for carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxides (NO(x)), PM, light extinction and absorption cross sections, and spectral scattering cross sections specific to flaming and smoldering phases are reported. Emission factors are generally reproducible within +/- 20% during the flaming phase, which, despite its short duration, dominates the carbon emission (mostly in the form of CO2) and the production of light absorption and EC. Higher and more variable emission factors for CO, THC, and PM are found during the smoldering phase, especially for fuels containing substantial moisture. Organic carbon (OC) and EC mass account for a majority (i.e., > 60%) of PM mass; other important elements include potassium, chlorine, and sulfur. Thermal analysis separates the EC into subfractions based on analysis temperature demonstrating that high-temperature EC (EC2; at 700 degrees C) varies from 1% to 70% of PM among biomass burns, compared to 75% in kerosene soot. Despite this, the conversion factor between EC and light absorption emissions is rather consistent across fuels and burns, ranging from 7.8 to 9.6 m2/g EC. Findings from this study should be considered in the development of PM and EC emission inventories for visibility and radiative forcing assessments.


Asunto(s)
Contaminación del Aire/análisis , Material Particulado/análisis , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Monóxido de Carbono/análisis , Monóxido de Carbono/química , Monitoreo del Ambiente , Hidrocarburos/análisis , Hidrocarburos/química , Óxidos de Nitrógeno/análisis , Óxidos de Nitrógeno/química , Material Particulado/química
7.
Environ Monit Assess ; 115(1-3): 39-50, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16502023

RESUMEN

Throughout August and September, 2003, wildfires burned in close proximity to Missoula, Montana, with smoke emanating from the fires impacting the valley for much of the summer. This presented the perfect opportunity to measure the levels of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) comprising ambient forest fire smoke particles impacting the Missoula Valley. An air sampler at the Montana Department of Environmental Quality's (DEQ) compliance site in Missoula measured hourly averages of PM(10) throughout the fire season. Three collocated PM(2.5) cyclones collected 24-h smoke samples using quartz filters and Polyurethane Foam (PUF) sorbent cartridges. From the quartz filters, concentrations of Organic and Elemental Carbon (OC/EC) were measured, while PCDD/F were measured from one set of a filter (particle phase) and PUF (vapor phase) aggregate of samples in an attempt to also investigate the different phases of PCDD/F in forest fire smoke impaired communities. Hourly PM(10) concentrations peaked at 302.9 microg m(-3) on August 15. The highest OC concentration (115.6 microg m(-3)) was measured between August 21-22, and the highest EC concentration of 10.5 microg m(-3) was measured August 20-21. Measurable concentrations of PM(2.5) associated PCDD/Fs were not detected from a representative aggregate sample, with the exception of small amounts of 1,2,3,4,6,7,8-heptachlorodibenzodioxin and octachlorodibenzodioxin. PM(2.5) samples collected during the smoke events were composed of approximately 65% OC. However, the OC fraction of the particles collected in the smoke impaired Missoula valley was not composed of significant amounts of PCDD/F.


Asunto(s)
Benzofuranos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Incendios , Material Particulado/análisis , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzofuranos Policlorados , Montana , Tamaño de la Partícula , Dibenzodioxinas Policloradas/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...