Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 474: 134638, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838529

RESUMEN

Parameterization of dry deposition is key for modelling of atmospheric transport and deposition of radioactive particles. Still, very simple parameterizations are often encountered in radioactive preparedness models such as the SNAP model (SNAP=Severe Nuclear Accident Program) of the Norwegian Meteorological Institute. In SNAP a constant dry deposition velocity (=0.2 cm/s) neglecting aerodynamic and surface resistances, is presently used. Therefore, two new dry depositions schemes (the Emerson scheme and the EMEP (European Monitoring and Evaluation Programme) scheme) have been implemented in SNAP to evaluate the benefits of including aerodynamic and surface resistances codes with respect to model prediction skills. The three dry deposition schemes are evaluated using 137Cs total deposition from soil sample data (n = 540) for a 60 km radial zone out from the Chernobyl Nuclear Power Plant (ChNPP) collected during the months after the accident. The present study capitalizes on high resolution meteorological data (2.5 km horizontal resolution), a detailed land-use data set with 273 sub-classes and the hitherto most comprehensive source term description for the Chernobyl accident. Based on our findings it is recommended to replace the present simple SNAP scheme with the Emerson or EMEP dry deposition scheme.

2.
Sci Total Environ ; 940: 173503, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38821276

RESUMEN

Norway's Centre of Excellence for Environmental Radioactivity (CERAD) research programme included studies on transfer of radionuclides in various ecosystems within the context of environmental risk assessment. This article provides highlights from 10 years of research within this topic and summarises lessons learnt from the process. The scope has been extensive, involving laboratory-based experiments, field studies and the implementation of transfer models quantifying radionuclide uptake directly from the surrounding environment and via food chains. Field studies have had a global span and have, inter alia, covered sites contaminated with radionuclides associated with particles, ranging from nanoparticles to fragments, due to nuclear accidents (e.g., Chornobyl and Fukushima accidents) along with sites having enhanced levels of naturally occurring radioactive materials (e.g., Fen Complex in Norway and Taboshar in Tajikistan). Focus has been put on speciation and kinetics in determining radionuclide behavior and fate as well as on the influence of environmental factors that are potentially critical for the transfer of radionuclides. In particular, seasonal factors have been shown to greatly affect the dynamics of 137Cs and 90Sr bioaccumulation and loss in freshwater fish. The work has led to the collation of organism-specific (i) parameters important for kinetic models, i.e., uptake and depuration rates, and (ii) steady-state concentration ratios, CRs, where the use of stable analogue CRs as proxies for radionuclides has been brought into question. Dynamic models have been developed and applied for radiocaesium transfer to reindeer, radionuclide transfer in Arctic marine systems, transfer to fish via water and feed and commonly used agricultural food-chain transfer models applied in the context of nuclear emergency preparedness. The CERAD programme should contribute substantially to the scientific community's understanding of radionuclide transfer in environmental systems.


Asunto(s)
Radioisótopos , Monitoreo de Radiación , Noruega , Ecosistema , Radioisótopos de Cesio/análisis , Radioisótopos de Cesio/metabolismo , Cadena Alimentaria , Animales , Contaminantes Radiactivos del Agua/análisis , Medición de Riesgo , Radioisótopos de Estroncio/análisis , Radioisótopos de Estroncio/metabolismo
3.
Sci Total Environ ; 904: 166844, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689207

RESUMEN

The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 µGy h-1), Medium (11 µGy h-1), and Low (0.2 µGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.


Asunto(s)
Accidente Nuclear de Chernóbil , Pinus sylvestris , Pinus , Monitoreo de Radiación , Radiación Ionizante , Árboles , Bosques
4.
Sci Total Environ ; 903: 166470, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625724

RESUMEN

Traffic pollution has been linked to high levels of metals and organic contaminants in road-side soils, largely due to abrasion of tires, brake pads and the road surface. Although several studies have demonstrated correlations between different pollutants and various traffic variables, they mainly focused on roads with medium to high traffic density (>30,000 vehicles per day). In this study we have focused on investigating tire wear particles and road-related metals (zinc, copper, lead, chromium, nickel, and the metalloid arsenic) in the soils of low traffic roads in rural areas (650-14,250 vehicles per day). Different explanatory factors were investigated, such as traffic density, speed, % heavy vehicles, organic matter content, annual precipitation, soil types and roadside slope profiles. The results show high levels of tire wear particles, from 2000 to 26,400 mg/kg (0.2-2.6 % tire wear in d.w. soil), which is up to five times higher compared to previously reported values in roadside soils of high traffic density areas. A weak but significant correlation was found between tire wear particles, traffic speed and the annual precipitation. No significant relationship was found between tire wear particles metals. The concentrations of metals were comparable to previous studies of high traffic areas of Norway, as well as both urban and rural soils in other countries. For the metals, all factors together explained 45 % of the variation observed, with traffic density (11 %) and organic matter content (10 %) as the most important single variables. The analysis of tire wear particles in soils using Pyrolysis Gas chromatography Mass Spectrometry is challenging, and the results presented demonstrate the need for pretreatment to remove organic matter from the samples before analysis.

5.
Environ Res ; 231(Pt 3): 116250, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268214

RESUMEN

Rock particles from drilling and blasting during tunnel construction (DB particles) are released to the aquatic environment where they may cause negative toxicological and ecological effects. However, there exists little research on the difference in morphology and structure of these particles. Despite this DB particles are assumed to be sharper and more angular than naturally eroded particles (NE particles), and in consequence cause greater mechanical abrasion to biota. Moreover, morphology of DB particles is assumed to depend on geology, thus depending on where construction takes place different morphologies may be emitted. The objectives in the current study were to investigate the morphological differences between DB and NE particles, and the influence of mineral and elemental content on DB particles. Particle geochemistry and morphology were characterized by inductively coupled plasma mass spectrometry, micro-X-ray fluorescence, X-ray diffraction, environmental scanning electron microscope interfaced with energy dispersive X-ray, stereo microscope, dynamic image analysis and coulter counter. DB particles (61-91% < 63 µm) collected from five different tunnel construction locations in Norway were 8-15% more elongated (lower aspect ratio) than NE particles from river water and sediments, although their angularity was similar (solidity; diff 0.3-0.8%). Despite distinct mineral and elemental characteristics between tunnel construction locations, DB morphology was not explained by geochemical content since only 2-2.1% of the variance was explained. This suggests that particle formation mechanisms during drilling and blasting are more influential of morphology than mineralogy, when working in granite-gneiss terrain. When tunnelling in granite-gneiss terrain, particles with greater elongation than natural particles may enter aquatic systems.


Asunto(s)
Monitoreo del Ambiente , Dióxido de Silicio , Tamaño de la Partícula , Análisis Espectral , Monitoreo del Ambiente/métodos
6.
ACS Nano ; 17(6): 5296-5305, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36921214

RESUMEN

A combination of synchrotron-based elemental analysis and acute toxicity tests was used to investigate the biodistribution and adverse effects in Daphnia magna exposed to uranium nanoparticle (UNP, 3-5 nm) suspensions or to uranium reference (Uref) solutions. Speciation analysis revealed similar size distributions between exposures, and toxicity tests showed comparable acute effects (UNP LC50: 402 µg L-1 [336-484], Uref LC50: 268 µg L-1 [229-315]). However, the uranium body burden was 3- to 5-fold greater in UNP-exposed daphnids, and analysis of survival as a function of body burden revealed a ∼5-fold higher specific toxicity from the Uref exposure. High-resolution X-ray fluorescence elemental maps of intact, whole daphnids from sublethal, acute exposures of both treatments revealed high uranium accumulation onto the gills (epipodites) as well as within the hepatic ceca and the intestinal lumen. Uranium uptake into the hemolymph circulatory system was inferred from signals observed in organs such as the heart and the maxillary gland. The substantial uptake in the maxillary gland and the associated nephridium suggests that these organs play a role in uranium removal from the hemolymph and subsequent excretion. Uranium was also observed associated with the embryos and the remnants of the chorion, suggesting uptake in the offspring. The identification of target organs and tissues is of major importance to the understanding of uranium and UNP toxicity and exposure characterization that should ultimately contribute to reducing uncertainties in related environmental impact and risk assessments.


Asunto(s)
Uranio , Contaminantes Químicos del Agua , Animales , Rayos X , Daphnia/química , Uranio/toxicidad , Sincrotrones , Distribución Tisular , Toxicocinética , Imagen Óptica , Contaminantes Químicos del Agua/química
7.
Sci Total Environ ; 867: 161399, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638980

RESUMEN

Environmental impact assessments of trace metals and radionuclides in estuarine waters will benefit from numerical transport models that can provide detailed and accurate predictions of concentrations of harmful physico-chemical forms of contaminants at adequate spatial and temporal resolution. Aiming to study the potential of aluminium (Al) exposure to biota, a transport model (OpenDrift) including dynamic speciation and transformation processes was improved and applied, using three-dimensional hydrodynamic flow fields from a numerical ocean model (ROMS) at high horizontal resolution (32 m). Al transport and concentration was computed along the Sandnesfjorden Fjord, south-eastern Norway, from river outlet to open coastal waters. Validation of the circulation model with 29 hydrographic profiles from Sandnesfjorden showed substantial improvements compared to previous studies due to optimized model configuration (salinity overestimation decreased from >7 psu to <4 psu). Modeled Al data compared well with observed surface Al concentration from 12 locations and the along-fjord decreasing trend in Al-concentration was well reproduced (error ratios were <2 in Sandnesfjorden). Except in the channel area, both salinity and Al concentration estimates lie well within the expected variability. However, the transport modeling gave a more detailed site-specific picture of the Al concentration, suggesting more scattered and variable fields than indicated by observational data (variations of a factor 3-4 over short spatiotemporal scales). Reversed flow events (surface flow into the fjord) caused considerable mixing and redistribution of water masses, affecting both horizontal mixing of river discharges with coastal water as well as vertically as surface water mixed with deeper water masses. These blocking events strongly changed properties and distribution of the water masses giving rise to local and short-term high Al-exposure episodes (variations of a factor of 10 over a 12 h period) in the fjord that may pose risks to biota and therefore should be taken into account in impact and risk assessments.

8.
Environ Sci Technol ; 57(2): 1071-1079, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36598768

RESUMEN

Micro- and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measurements of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compromised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.


Asunto(s)
Uranio , Contaminantes Químicos del Agua , Animales , Rayos X , Daphnia , Uranio/toxicidad , Fluorescencia , Sincrotrones , Tracto Gastrointestinal , Contaminantes Químicos del Agua/toxicidad
9.
Sci Total Environ ; 846: 157457, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868377

RESUMEN

Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m-2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h-1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h-1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.


Asunto(s)
Antioxidantes , Araceae , Antioxidantes/metabolismo , Clorofila/metabolismo , Rayos gamma , Peroxidación de Lípido , Estrés Oxidativo/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Rayos Ultravioleta
10.
J Hazard Mater ; 435: 129032, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35650740

RESUMEN

Road pollution is one of the major sources of microplastic particles to the environment. The distribution of tire, polymer-modified bitumen (PMB) and tire and road wear particles (TRWP) in different tunnel compartments were explored: road surface, gully-pots and tunnel wash water. A new method for calculating TRWP using Monte Carlo simulation is presented. The highest concentrations on the surface were in the side bank (tire:13.4 ± 5.67;PMB:9.39 ± 3.96; TRWP:22.9 ± 8.19 mg/m2), comparable to previous studies, and at the tunnel outlet (tire:7.72 ± 11.2; PMB:5.40 ± 7.84; TRWP:11.2 ± 16.2 mg/m2). The concentrations in gully-pots were highest at the inlet (tire:24.7 ± 26.9; PMB:17.3 ± 48.8; TRWP:35.8 ± 38.9 mg/g) and comparable to values previously reported for sedimentation basins. Untreated wash water was comparable to road runoff (tire:38.3 ± 10.5; PMB:26.8 ± 7.33; TRWP:55.3 ± 15.2 mg/L). Sedimentation treatment retained 63% of tire and road wear particles, indicating a need to increase the removal efficiency to prevent these from entering the environment. A strong linear relationship (R2-adj=0.88, p < 0.0001) between total suspended solids (TSS) and tire and road wear rubber was established, suggesting a potential for using TSS as a proxy for estimating rubber loads for monitoring purposes. Future research should focus on a common approach to analysis and calculation of tire, PMB and TRWP and address the uncertainties related to these calculations.


Asunto(s)
Microplásticos , Material Particulado , Material Particulado/análisis , Plásticos , Goma , Agua
11.
Environ Sci Technol ; 56(8): 5081-5089, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35378039

RESUMEN

A combination of synchrotron radiation-based elemental imaging, in vivo redox status analysis, histology, and toxic responses was used to investigate the uptake, biodistribution, and adverse effects of Ce nanoparticles (CeO2 NP; 10 nm; 0.5-34.96 mg Ce L-1) or Ce(NO3)3 (2.3-26 mg Ce L-1) in Caenorhabditis elegans. Elemental mapping of the exposed nematodes revealed Ce uptake in the alimentary canal prior to depuration. Retention of CeO2 NPs was low compared to that of Ce(NO3)3 in depurated individuals. X-ray fluorescence (XRF) mapping showed that Ce translocation was confined to the pharyngeal valve and foregut. Ce(NO3)3 exposure significantly decreased growth, fertility, and reproduction, caused slightly reduced fecundity. XRF mapping and histological analysis revealed severe tissue deformities colocalized with retained Ce surrounding the pharyngeal valve. Both forms of Ce activated the sod-1 antioxidant defense, particularly in the pharynx, whereas no significant effects on the cellular redox balance were identified. The CeO2 NP-induced deformities did not appear to impair the pharyngeal function or feeding ability as growth effects were restricted to Ce(NO3)3 exposure. The results demonstrate the utility of integrated submicron-resolution SR-based XRF elemental mapping of tissue-specific distribution and adverse effect analysis to obtain robust toxicological evaluations of metal-containing contaminants.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Animales , Caenorhabditis elegans , Fluorescencia , Humanos , Nanopartículas del Metal/toxicidad , Faringe , Sincrotrones , Distribución Tisular , Rayos X
12.
Sci Total Environ ; 824: 153785, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35182629

RESUMEN

According to estimates put forward in multiple studies, tire and road wear particles are one of the largest sources to microplastic contamination in the environment. There are large uncertainties associated with local emissions and transport of tire and road wear particles into environmental compartments, highlighting an urgent need to provide more data on inventories and fluxes of these particles. To our knowledge, the present paper is the first published data on mass concentrations and snow mass load of tire and polymer-modified road wear particles in snow. Roadside snow and meltwater from three different types of roads (peri-urban, urban highway and urban) were analysed by Pyrolysis Gas Chromatography Mass Spectrometry. Tire particle mass concentrations in snow (76.0-14,500 mg/L meltwater), and snow mass loads (222-109,000 mg/m2) varied widely. The concentration ranges of polymer-modified particles were 14.8-9550 mg/L and 50.0-28,800 mg/m2 in snow and meltwater, respectively. Comparing the levels of tire and PMB particles to the total mass of particles, showed that tire and PMB-particles combined only contribute to 5.7% (meltwater) and 5.2% (mass load) of the total mass concentration of particles. The large variation between sites in the study was investigated using redundancy analysis of the possible explanatory variables. Contradictory to previous road studies, speed limit was found to be one of the most important variables explaining the variation in mass concentrations, and not Annual Average Daily Traffic. All identified variables explained 69% and 66%, for meltwater and mass load concentrations, respectively. The results show that roadside snow contain total suspended solids in concentrations far exceeding release limits of tunnel and road runoff, as well as tire particles in concentrations comparable to levels previously reported to cause toxicity effects in organisms. These findings strongly indicate that roadside snow should be treated before release into the environment.


Asunto(s)
Microplásticos , Plásticos , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas , Polímeros , Nieve , Emisiones de Vehículos/análisis
13.
Sci Total Environ ; 806(Pt 1): 150128, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583084

RESUMEN

Atmospheric dispersion models are crucial for nuclear risk assessment and emergency response systems since they rapidly predict air concentrations and deposition of released radionuclides, providing a basis for dose estimations and countermeasure strategies. Atmospheric dispersion models are associated with relatively large and often unknown uncertainties that are mostly attributed to meteorology, source terms and parametrisation of the dispersion model. By developing methods that can provide reliable uncertainty ranges for model outputs, decision makers have an improved basis for handling nuclear emergency situations. In the present work, model skill of the Severe Nuclear Accident Programme (SNAP) model was quantified by employing an ensemble method in which 51 meteorological realisations from a numerical weather prediction model were combined with 9 source term descriptions for the accidental 137Cs releases from Fukushima Daiichi Nuclear Power Plant during 14th-17th March 2011. The meteorological forecast was compared to observations of wind speed from 30 meteorological stations. The 459 dispersion realisations were compared with hourly observations of activity concentrations from 100 air filter stations. Exclusive use of deterministic meteorology resulted in most members of the dispersion ensemble showing too low concentration values, however this was mitigated by applying ensemble meteorology. Ensemble predictions, including both the meteorological and source term ensemble, show an overall higher prediction skill compared to individual meteorology and source term runs, with true predictive rate accuracy increasing from 30%-50% to 70%-90%, with a decrease in positive predictive rate accuracy from 75%-80% to 65%-75%. Skill scores and other ensemble indicators also showed improvements in using ensembles of source terms and meteorology. From the present study on the Fukushima accident there are strong indications that ensemble predictions improve the basis for decision making in the early phase after a nuclear accident, which emphasises the importance of including ensemble prediction in nuclear preparedness tools of the future.


Asunto(s)
Contaminantes Radiactivos del Aire , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Aire/análisis , Radioisótopos de Cesio/análisis , Japón , Plantas de Energía Nuclear , Incertidumbre
14.
J Hazard Mater ; 423(Pt A): 127092, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34488093

RESUMEN

Tire and road wear particles may constitute the largest source of microplastic particles into the environment. Quantification of these particles are associated with large uncertainties which are in part due to inadequate analytical methods. New methodology is presented in this work to improve the analysis of tire and road wear particles using pyrolysis gas chromatography mass spectrometry. Pyrolysis gas chromatography mass spectrometry of styrene butadiene styrene, a component of polymer-modified bitumen used on road asphalt, produces pyrolysis products identical to those of styrene butadiene rubber and butadiene rubber, which are used in tires. The proposed method uses multiple marker compounds to measure the combined mass of these rubbers in samples and includes an improved step of calculating the amount of tire and road based on the measured rubber content and site-specific traffic data. The method provides good recoveries of 83-92% for a simple matrix (tire) and 88-104% for a complex matrix (road sediment). The validated method was applied to urban snow, road-side soil and gully-pot sediment samples. Concentrations of tire particles in these samples ranged from 0.1 to 17.7 mg/mL (snow) to 0.6-68.3 mg/g (soil/sediment). The concentration of polymer-modified bitumen ranged from 0.03 to 0.42 mg/mL (snow) to 1.3-18.1 mg/g (soil/sediment).


Asunto(s)
Plásticos , Polímeros , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos , Pirólisis
15.
Sci Total Environ ; 738: 139352, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32806381

RESUMEN

Roads are estimated to be the largest source of microplastic particles in the environment, through release of particles from tires, road markings and polymer-modified bitumen. These are all released through the wear and tear of tires and the road surface. During the winter in cold climates, the road surface may freeze and cause icing on the roads. To improve traffic safety during winter, road salt is used for de-icing. Knowledge of microplastic (MP) contamination in road salt has, until now, been lacking. This is contrary to the increasing number of studies of microplastics in food-grade salt. The objective of this study was to investigate if road salt could be an additional source of microplastics to the environment. Fourier-Transform Infrared spectroscopy (FT-IR) and Pyrolysis gas chromatography mass spectrometry (GC-MS) were employed to identify and quantify the polymer content in four types of road salts, three sea salts and one rock salt. The particle number of MP in sea salts (range 4-240 MP/kg, mean ±â€¯s.d. = 35 ±â€¯60 MP/kg) and rock salt (range 4-192 MP/kg, 424 ±â€¯61 MP/kg, respectively) were similar, whereas, MP mass concentrations were higher in sea salts (range 0.1-7650 µg/kg, 442 ±â€¯1466 µg/kg) than in rock salts (1-1100 µg/kg, 322 ±â€¯481 µg/kg). Black rubber-like particles constituted 96% of the total concentration of microplastics and 86% of all particles in terms of number of particles/kg. Black rubber-like particles appeared to be attributable to wear of conveyer belts used in the salt production. Road salt contribution to MP on state and county roads in Norway was estimated to 0.15 t/year (0.003% of total road MP release), 0.07 t/year in Sweden (0.008%) and 0.03 t/year in Denmark (0.0004-0.0008%) Thus, microplastics in road salt are a negligible source of microplastics from roads compared to other sources.

16.
J Environ Radioact ; 219: 106273, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32339145

RESUMEN

In this study we performed microscopic characterization of mineral particles that were collected in the thorium-rich Fen Complex in Norway and identified and isolated based on autoradiography in function of their radioactivity. For this we combined information obtained with X-ray absorption µ-CT, µ-XRF and µ-XRD, both in bi- and in three-dimensional (tomographic) mode. We demonstrate that radionuclides and metals are heterogeneously distributed both within soil samples and within individual Th-enriched aggregates, which are characterised as low-density mineral bulk particles with high density material inclusions, where Th as well as several metals are highly concentrated. For these sites, it is important to take into account how these inhomogeneous distributions could affect the overall environmental behaviour of Th and progeny upon weathering due to human or environmental factors. Moreover, the estimated size of the Th-containing inclusions as determined in this work represents information of importance for the characterization of radionuclides and toxic metals exposure, as well as for assessing the viability of mining for Th and rare-earth metals in the Fen Complex and the associated environmental impact.


Asunto(s)
Monitoreo de Radiación , Minería , Noruega , Contaminantes Radiactivos del Suelo , Torio
17.
Sci Total Environ ; 727: 138488, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32339828

RESUMEN

Radioactive particles originating from nuclear fuel reprocessing at the United Kingdom Atomic Energy Authority's Dounreay Facility were inadvertently released to the environment in the late 1950s to 1970s and have subsequently been found on site grounds and local beaches. Previous assessments of risk associated with encountering a particle have been based on conservative assumptions related to particle composition and speciation. To reduce uncertainties associated with environmental impact assessments from Dounreay particles, further characterization is relevant. Results of particles available for this study showed variation between Dounreay Fast Reactor (DFR) and Materials Test Reactor (MTR) particles, reflecting differences in fuel design, release scenarios, and subsequent environmental influence. Analyses of DFR particles showed they are small (100-300 µm) and contain spatially correlated U and Nb. Molybdenum, part of the DFR fuel, was identified at atomic concentrations below 1%. Based on SR-based micrometer-scale X-ray Absorption Near Edge Structure spectroscopy (µ-XANES), U may be present as U(IV), and, based on a measured Nb/U atom ratio of ~2, stoichiometric considerations are commensurable with the presence of UNb2O7. The MTR particles were larger (740-2000 µm) and contained U and Al inhomogeneously distributed. Neodymium (Nd) was identified in atomic concentrations of around 1-2%, suggesting it was part of the fuel design. The presence of U(IV) in MTR particles, as indicated by µ-XANES analysis, may be related to oxidation of particle surfaces, as could be expected due to corrosion of UAlx fuel particles in air. High 235U/238U atom ratios in individual DFR (3.2 ± 0.8) and MTR (2.6 ± 0.4) particles reflected the presence of highly enriched uranium. The DFR particles featured lower 137Cs activity levels (2.00-9.58 kBq/particle) than the MTR (43.2-641 kBq 137Cs/particle) particles. The activities of the dose contributing radionuclides 90Sr/90Y were proportional to 137Cs (90Sr/137Cs activity ratio ≈ 0.8) and particle activities were roughly proportional to the size. Based on direct beta measurements, gamma spectrometry, and the VARSKIN6 model, contact dose rates were calculated to be approximately 74 mGy/h for the highest activity MTR particle, in agreement with previously published estimates.

19.
Free Radic Biol Med ; 152: 583-596, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31805397

RESUMEN

In the current study, effects of chronic exposure to ionizing gamma radiation were assessed in the radioresistant nematode Caenorhabditis elegans in order to understand whether antioxidant defences (AODs) could ameliorate radical formation, or if increased ROS levels would cause oxidative damage. This analysis was accompanied by phenotypical as well as molecular investigations, via assessment of reproductive capacity, somatic growth and RNA-seq analysis. The use of a fluorescent reporter strain (sod1::gfp) and two ratiometric biosensors (HyPer and Grx1-roGFP2) demonstrated increased ROS production (H2O2) and activation of AODs (SOD1 and Grx) in vivo. The data showed that at dose-rates ≤10 mGy h-1 defence mechanisms were able to prevent the manifestation of oxidative stress. In contrast, at dose-rates ≥40 mGy h-1 the continuous formation of radicals caused a redox shift, which lead to oxidative stress transcriptomic responses, including changes in mitochondrial functions, protein degradation, lipid metabolism and collagen synthesis. Moreover, genotoxic effects were among the most over-represented functions affected by chronic gamma irradiation, as indicated by differential regulation of genes involved in DNA damage, DNA repair, cell-cycle checkpoints, chromosome segregation and chromatin remodelling. Ultimately, the exposure to gamma radiation caused reprotoxic effects, with >20% reduction in the number of offspring per adult hermaphrodite at dose-rates ≥40 mGy h-1, accompanied by the down-regulation of more than 300 genes related to reproductive system, apoptosis, meiotic functions and gamete development and fertilization.


Asunto(s)
Caenorhabditis elegans , Peróxido de Hidrógeno , Animales , Caenorhabditis elegans/genética , Rayos gamma , Estrés Oxidativo , Especies Reactivas de Oxígeno
20.
J Environ Radioact ; 211: 106078, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31677430

RESUMEN

Since 1945, a series of nuclear and radiological sources have contributed to the release of radioactive particles containing refractory elements into the environment. Several years of research have demonstrated that the particle composition will depend on the source, while the release scenarios will influence particle properties of relevance for environmental transfer. Radioactive particles can also carry sufficient amount of radioactivity (MBq) and represent point sources of radiological concern. Most radiological assessment models, however, are based on bulk concentrations, assuming that radionuclides in the environment are evenly distributed. In contrast, radioactive particles and thereby doses are unevenly distributed, while leaching of radionuclides from particles prior to measurements can be partial, potentially leading to underestimation of inventories. For areas affected by particle contamination, information on particle characteristics controlling the particle weathering rates and remobilization of particle associated radionuclides will therefore be essential to reduce the overall uncertainties of the impact assessments. The present paper will focus on analytical strategies, from screening techniques applicable for identifying hot spots in the field, fractionation techniques and single particle extraction techniques as a preparatory mean to apply non-destructive solid state speciation techniques, till leaching techniques applied sequentially to obtain information on binding mechanisms, mobility and potential bioavailability. Thus, a combination of techniques should be utilized to characterize radioactive particles in order to improve environmental assessments for areas affected by radioactive particle fallout.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Ceniza Radiactiva , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...