Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofilm ; 7: 100197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706985

RESUMEN

Lactiplantibacillus plantarum is a Gram-positive non-motile bacterium capable of producing biofilms that contribute to the colonization of surfaces in a range of different environments. In this study, we compared two strains, WCFS1 and CIP104448, in their ability to produce biofilms in static and dynamic (flow) environments using an in-house designed flow setup. This flow setup enables us to impose a non-uniform flow velocity profile across the well. Biofilm formation occurred at the bottom of the well for both strains, under static and flow conditions, where in the latter condition, CIP104448 also showed increased biofilm formation at the walls of the well in line with the higher hydrophobicity of the cells and the increased initial attachment efficacy compared to WCFS1. Fluorescence and scanning electron microscopy showed open 3D structured biofilms formed under flow conditions, containing live cells and ∼30 % damaged/dead cells for CIP104448, whereas the WCFS1 biofilm showed live cells closely packed together. Comparative proteome analysis revealed minimal changes between planktonic and static biofilm cells of the respective strains suggesting that biofilm formation within 24 h is merely a passive process. Notably, observed proteome changes in WCFS1 and CIP104448 flow biofilm cells indicated similar and unique responses including changes in metabolic activity, redox/electron transfer and cell division proteins for both strains, and myo-inositol production for WCFS1 and oxidative stress response and DNA damage repair for CIP104448 uniquely. Exposure to DNase and protease treatments as well as lethal concentrations of peracetic acid showed highest resistance of flow biofilms. For the latter, CIP104448 flow biofilm even maintained its high disinfectant resistance after dispersal from the bottom and from the walls of the well. Combining all results highlights that L. plantarum biofilm structure and matrix, and physiological state and stress resistance of cells is strain dependent and strongly affected under flow conditions. It is concluded that consideration of effects of flow on biofilm formation is essential to better understand biofilm formation in different settings, including food processing environments.

2.
J Texture Stud ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049369

RESUMEN

We have calculated an entropy or information measure of previously reported experimentally determined temporal dominance of sensations (TDS) data of texture attributes for two sets of emulsion filled gels throughout the mastication cycle. The samples were emulsion filled gels and two-layered emulsion filled gels. We find that the entropy measure follows an average curve, which is different for each set. The specifics of the entropy curve may serve as a fingerprint for the perception of a specific food sample.

3.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067547

RESUMEN

We study the liquid phase behavior of ternary mixtures of monodisperse hard spheres in solution. The interactions are modeled in terms of the second virial coefficient and can be additive hard sphere (HS) or non-additive hard sphere (NAHS) interactions. We give the set of equations that defines the phase diagram for mixtures of three components. We calculate the theoretical liquid-liquid phase separation boundary for two-phase separation (the binodal) and, if applicable, the three-phase boundary, as well as the plait points and the spinodal. The sizes of the three components are fixed. The first component (A) is the smallest one, the second component (B) is four times the size of the smallest component, and the third (C) component is three times the size of the smallest one. The interaction between the first two components is fixed, and this AB sub-mixture shows phase separation. The interactions of component C with the other two components are varied. Component C can be compatible or incompatible with components A and B. Depending on the compatibility of the components, the phase diagram is altered. The addition of the third component has an influence on the phase boundary, plait points, stability region, fractionation, and volume ratio between the different phases. When all sub-mixtures (AB, AC, and BC) show phase separation, a three-phase system becomes possible when the incompatibility among all components is high enough. The position and size of the three-phase region is dependent on the interactions between the different sub-mixtures. We study the fractionation off all components depending on specific parent concentrations.

4.
Scand J Caring Sci ; 37(4): 1067-1078, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37222406

RESUMEN

BACKGROUND: Safety in home healthcare has garnered increased attention as more people are receiving care for complex conditions at home. The prerequisites for providing safe care at home differ from those in hospitals. Malnutrition, falls, pressure ulcers and inappropriate medication commonly follow poor risk assessments, causing unnecessary suffering and costs. Therefore, risk prevention in home healthcare needs to be prioritised and studied more closely. AIM: To describe nurses' experiences of performing risk prevention in municipal home healthcare. METHODS: Qualitative inductive approach, using semi-structured interviews with 10 registered nurses in a municipality in southern Sweden. Data underwent qualitative content analysis. FINDINGS: The analysis resulted in three main categories and one overarching theme describing nurses' experiences of risk prevention in home healthcare. Getting everyone onboard comprises the categories: Managing safety while respecting the patient's self-determination, which covers patient participation, the strategic importance of respecting different views of risks and information and the fact that healthcare workers are guests in the patient's home. Finding ways to make it work touches upon the relational aspect, including next-of-kin and promoting a common understanding to prevent risks. Being squeezed between resources and requirements refers to ethical dilemmas, teamwork, leadership and organisational prerequisites. CONCLUSION: Patient habits, living conditions and limited awareness of risks is a challenge in risk prevention in home healthcare, where patient participation plays a pivotal role. Risk prevention in home healthcare needs to be initiated at an early stage of disease and ageing and should be seen as a process where early health-promoting interventions can prevent the development and accumulation of risks over time. Long-term cross-organisational collaborations and patients' physical, mental and psychosocial conditions also need to be taken into account.


Asunto(s)
Servicios de Atención de Salud a Domicilio , Enfermeras y Enfermeros , Humanos , Actitud del Personal de Salud , Hospitales , Personal de Salud , Investigación Cualitativa
5.
Res Microbiol ; 174(6): 104072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080258

RESUMEN

Bacillus cereus is a food-borne pathogen capable of producing biofilms. Following analysis of biofilm formation by B. cereus ATCC 14579 transposon mutants in defined medium (DM), a deletion mutant of bc2939 (Δbc2939) was constructed that showed decreased crystal violet biofilm staining and biofilm cell counts. In addition, Δbc2939 also produced smaller colony biofilms with lower cell counts and loss of wrinkly morphology. The bc2939 gene encodes for Prephenate dehydrogenase, which converts Prephenate to 4-Hydroxy-phenylpyruvate (4-HPPA) in the l-tyrosine branch of the Shikimate pathway. While growth of the mutant and WT in DM was similar, addition of l-tyrosine was required to restore WT-like (colony) biofilm formation. Comparative proteomics showed reduced expression of Tyrosine-protein kinase/phosphatase regulators and extracellular polysaccharide cluster 1 (EPS1) proteins, aerobic electron transfer chain cytochrome aa3/d quinol oxidases, and iso-chorismate synthase involved in menaquinone synthesis in DM grown mutant biofilm cells, while multiple oxidative stress-related catalases and superoxide dismutases were upregulated. Performance in shaking cultures showed a 100-fold lower concentration of menaquinone-7 and reduction in cell counts of DM grown Δbc2939 indicating increased oxygen sensitivity. Combining all results, points to an important role of Tyrosine-modulated EPS1 production and menaquinone-dependent aerobic respiration in B. cereus ATCC 14579 (colony) biofilm formation.


Asunto(s)
Bacillus cereus , Tirosina , Bacillus cereus/genética , Vitamina K 2 , Biopelículas
6.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234891

RESUMEN

The ability to separate enzymes, or cells or viruses, from a mixture is important and can be realized by the incorporation of the mixture into a macromolecular solution. This incorporation may lead to a spontaneous phase separation, with one phase containing the majority of one of the species of interest. Inspired by this phenomenon, we studied the theoretical phase behavior of a model system composed of an asymmetric binary mixture of hard spheres, of which the smaller component was monodisperse and the larger component was polydisperse. The interactions were modeled in terms of the second virial coefficient and could be additive hard sphere (HS) or nonadditive hard sphere (NAHS) interactions. The polydisperse component was subdivided into two subcomponents and had an average size ten or three times the size of the monodisperse component. We gave the set of equations that defined the phase diagram for mixtures with more than two components in a solvent. We calculated the theoretical liquid-liquid phase separation boundary for the two-phase separation (the binodal) and three-phase separation, the plait point, and the spinodal. We varied the distribution of the polydisperse component in skewness and polydispersity, and we varied the nonadditivity between the subcomponents as well as between the main components. We compared the phase behavior of the polydisperse mixtures with binary monodisperse mixtures for the same average size and binary monodisperse mixtures for the same effective interaction. We found that when the compatibility between the polydisperse subcomponents decreased, the three-phase separation became possible. The shape and position of the phase boundary was dependent on the nonadditivity between the subcomponents as well as their size distribution. We conclude that it is the phase enriched in the polydisperse component that demixes into an additional phase when the incompatibility between the subcomponents increases.


Asunto(s)
Sustancias Macromoleculares , Solventes
7.
J Colloid Interface Sci ; 612: 261-266, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998188

RESUMEN

HYPOTHESIS: Tuning and controlling the flow behavior of multi-component liquids has been a long-lasting struggle in various technological applications. Here, we studied Marangoni spreading of a polymer-surfactant ternary solution when deposited on a soap film with higher surface tension. The spreading front becomes unstable into a fingering pattern above the entanglement concentration of the polymer solution, indicating that the interplay between the elastic and interfacial properties drives the instability. Balancing these terms results in a critical length scale for the onset of the instability. EXPERIMENTS: To investigate the connection between the rheological characteristics of the samples and the origins of the instabilities, various rheological tests were performed. Elastic and loss modulus of the samples were measured within the linear viscoelastic regime. The spreading behavior of the solutions was studied using high-speed imaging techniques. FINDINGS: At low concentrations of polymers, spreading dynamics are governed by surface tension gradient and viscous dissipation leading to a stable front growing linearly in time. However, above the entanglement concentration of polymers spreading front destabilizes into a daisy shape pattern suggesting the elastic forces dominating the spreading dynamics. We introduced a length scale that precisely predicts the onset of the instability.

8.
NPJ Sci Food ; 5(1): 32, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903742

RESUMEN

Protein aggregation into gel networks is of immense importance in diverse areas from food science to medical research; however, it remains a grand challenge as the underlying molecular interactions are complex, difficult to access experimentally, and to model computationally. Early stages of gelation often involve protein aggregation into protein clusters that later on aggregate into a gel network. Recently synthesized protein microparticles allow direct control of these early stages of aggregation, decoupling them from the subsequent gelation stages. Here, by following the gelation of protein microparticles directly at the particle scale, we elucidate in detail the emergence of a percolating structure and the onset of rigidity as measured by microrheology. We find that the largest particle cluster, correlation length, and degree of polymerization all diverge with power laws, while the particles bind irreversibly indicating a nonequilibrium percolation process, in agreement with recent results on weakly attractive colloids. Concomitantly, the elastic modulus increases in a power-law fashion as determined by microrheology. These results give a consistent microscopic picture of the emergence of rigidity in a nonequilibrium percolation process that likely underlies the gelation in many more systems such as proteins, and other strongly interacting structures originating from (bio)molecules.

9.
Adv Sci (Weinh) ; 8(20): e2102279, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34402215

RESUMEN

The Poynting effect generically manifests itself as the extension of the material in the direction perpendicular to an applied shear deformation (torsion) and is a material parameter hard to design. Unlike isotropic solids, in designed structures, peculiar couplings between shear and normal deformations can be achieved and exploited for practical applications. Here, a metamaterial is engineered that can be programmed to contract or extend under torsion and undergo nonlinear twist under compression. First, it is shown that the system exhibits a novel type of inverted Poynting effect, where axial compression induces a nonlinear torsion. Then the Poynting modulus of the structure is programmed from initial negative values to zero and positive values via a pre-compression applied prior to torsion. The work opens avenues for programming nonlinear elastic moduli of materials and tuning the couplings between shear and normal responses by rational design. Obtaining inverted and programmable Poynting effects in metamaterials inspires diverse applications from designing machine materials, soft robots, and actuators to engineering biological tissues, implants, and prosthetic devices functioning under compression and torsion.


Asunto(s)
Modelos Teóricos , Impresión Tridimensional , Resistencia al Corte/fisiología , Estrés Mecánico , Módulo de Elasticidad/fisiología , Elasticidad , Presión
10.
J Colloid Interface Sci ; 602: 207-221, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119758

RESUMEN

HYPOTHESIS: Plant seeds store lipids in oleosomes, which are storage organelles with a triacylglycerol (TAG) core surrounded by a phospholipid monolayer and proteins. Due to their membrane components, oleosomes have an affinity for the air/oil-water interface. Therefore, it is expected that oleosomes can stabilise interfaces, and also compete with proteins for the air-water interface. EXPERIMENTS: We mixed rapeseed oleosomes with whey protein isolate (WPI), and evaluated their air-water interfacial properties by interfacial rheology and microstructure imaging. To understand the contribution of the oleosome components to the interfacial properties, oleosome membrane components (phospholipids and membrane proteins) or rapeseed lecithin (phospholipids) were also mixed with WPI. FINDINGS: Oleosomes were found to disrupt after adsorption, and formed TAG/phospholipid-rich regions with membrane fragments at the interface, forming a weak and mobile interfacial layer. Mixing oleosomes with WPI resulted in an interface with TAG/phospholipid-rich regions surrounded by whey protein clusters. Membrane components or lecithin mixed with proteins also resulted in an interface where WPI molecules aggregated into small WPI domains, surrounded by a continuous phase of membrane components or phospholipids. We also observed an increase in stiffness of the interfacial layer, due to the presence of oleosome membrane proteins at the interface.


Asunto(s)
Brassica napus , Agua , Adsorción , Gotas Lipídicas , Proteína de Suero de Leche
11.
Molecules ; 26(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799773

RESUMEN

The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid-liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.

12.
J Air Transp Manag ; 90: 101944, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33071486

RESUMEN

This article gives guidance to aviation managers being struck by environmental shocks. The introduced frameworks support aviation managers to think strategically during times of shocks and help them to prepare for future shocks by developing more resilient and learning organizations. Practical, short-term recommendations include strategically orienting or reorienting and not exaggerating the current, short-term developments due to unproductive uncertainty. Further, and to prepare for future shocks, the results of this study suggest that aviation managers should develop a common strategy language, introduce uncertainty as a standard factor for long-term planning, manage uncertainty proactively and make long-term plans accordingly by fostering a dialogue with various stake- and shareholders, being aware of the strategy tools in use, making the board a co-creating team and introducing a three-step process in sensing, seizing and transforming the organization accordingly.

13.
Food Res Int ; 138(Pt B): 109773, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33288162

RESUMEN

Plant proteins, and specifically those from legume crops, are increasingly recognised as sustainable and functional food ingredients. In this study, we expand on the knowledge of Bambara groundnut (Vigna subterranea (L.) Verdc.) [BGN] proteins, by characterising the composition, microstructure and rheological properties of BGN protein isolates obtained via wet extraction and protein-enriched fractions obtained via dry fractionation. The BGN protein isolates were compared in the context of the major storage protein, vicilin, as previously identified. Molecular weight analysis performed with gel electrophoresis and size-exclusion chromatography coupled to light-scattering, revealed some major bands (190 kDa) and elution patterns with molecular weights (205.6-274.1 kDa) corresponding to that of BGN vicilin, whilst the thermal denaturation temperature (Tp 91.1 °C, pH 7) of BGN protein isolates also coincided to that of the vicilin fraction. Furthermore, the concentration dependence of the elastic modulus G' of the BGN protein isolates, closely resembled that of BGN vicilin (both upon NaCl addition); suggesting that vicilin is the main component responsible for gelation. Confocal laser scanning and scanning electron micrographs revealed inhomogeneous aggregate structures, which implies that fractal scaling were better suited for description of the BGN protein isolate gel networks. Concerning the BGN protein-enriched fractions, both rotor and impact milling with air jet sieving and air classification, respectively, were successfully applied to separate these fractions from those high in starch; as evident from compositional analysis, particle size distributions and microscopic imaging. When considering sustainability aspects, dry fractionation could thus be a viable alternative for producing BGN protein-enriched fractions.


Asunto(s)
Fabaceae , Vigna , Productos Agrícolas
14.
J Food Sci ; 84(5): 1094-1103, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31038744

RESUMEN

In this study, we investigated the gelation of WPI fibrils in the presence of bacterial cellulose (BC) microfibrils at pH 2 upon prolonged heating. Rheology and microstructure were investigated as a function of BC microfibril concentration. The presence of BC microfibrils did not influence the gelation dynamics and resulting overall structure of the WPI fibrillar gel. The storage modulus and loss modulus of the mixed WPI-BC microfibril gels increased with increasing BC microfibril concentration, whereas the ratio between loss modulus and storage modulus remained constant. The WPI fibrils and BC microfibrils independently form two coexisting gel networks. Interestingly, near to the BC microfibrils more aligned WPI fibrils seemed to be formed, with individual WPI fibrils clearly distinguishable. The level of alignment of the WPI fibrils seemed to be dependent on the distance between BC microfibrils and WPI fibrils. This also is in line with our observation that with more BC microfibrils present, WPI fibrils are more aligned than in a WPI fibrillar gel without BC microfibrils. The large deformation response of the gels at different BC microfibril concentration and NaCl concentration is mainly influenced by the concentration of NaCl, which affects the WPI fibrillar gel structures, changing form linear fibrillar to a particulate gel. The WPI fibrillar gel yields the dominant contribution to the gel strength.


Asunto(s)
Bacterias/química , Celulosa/química , Geles/química , Microfibrillas/química , Proteína de Suero de Leche/química , Reología
15.
Soft Matter ; 15(7): 1633-1639, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30672957

RESUMEN

Crumpled sheets show slow mechanical relaxation and long lasting memory of previous mechanical states. By using uniaxial compression tests, the role of friction and ductility on the stress relaxation dynamics of crumpled systems is investigated. We find a material dependent relaxation constant that can be tuned by changing ductility and adhesive properties of the sheet. After a two-step compression protocol, nonmonotonic aging is reported for polymeric, elastomeric and metal sheets, with relaxation dynamics that are dependent on the material's properties. These findings can contribute to tailoring and programming of crumpled materials to get desirable mechanical properties.

16.
Int J Biol Macromol ; 124: 1094-1105, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476515

RESUMEN

Whey proteins can form different gel structures ranging from fine-stranded to particulate when appropriate conditions are applied. By incorporating polysaccharides, the gelation of WPI can be influenced. We investigated the heat-induced gelation of whey protein isolate (WPI) in the presence of bacterial cellulose (BC) microfibrils at pH 7 at different concentrations of NaCl. Our results showed that WPI and BC microfibrils form a homogeneous dispersion at pH 7. Upon heating, the WPI gel was formed independently in the presence of the BC microfibril gel, resulting in the formation of a composite gel. The gel structure and gelation dynamics of WPI was not influenced by the presence of BC microfibrils. However, the presence of BC microfibrils increased the storage modulus of the WPI gel, with an increase being negligible when the strength of the WPI gel is above a certain value. With an increase of NaCl concentration, the WPI gel structure changes from fine-stranded to a particulate gel, while the BC microfibril gel structure remains unchanged. No macroscopic phase separation could be observed in the WPI-BC microfibril gels. Our results showed that the rheological properties and water holding capacity of the WPI-BC microfibril mixed gels are mainly dominated by the WPI.


Asunto(s)
Celulosa/química , Cloruro de Sodio/química , Agua/química , Proteína de Suero de Leche/química , Geles , Concentración de Iones de Hidrógeno
17.
ACS Appl Mater Interfaces ; 9(11): 10136-10147, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28225592

RESUMEN

Proteins are known to be effective building blocks when it comes to structure formation in aqueous environments. Recently, we have shown that submicron colloidal protein particles can also be used to provide structure to liquid oil and form so-called oleogels ( de Vries , A. J. Colloid Interface Sci. 2017 , 486 , 75 - 83 ) . To prevent particle agglomeration, a solvent exchange procedure was used to transfer the aggregates from water to the oil phase. The aim of the current paper was to elucidate on the enhanced stability against agglomeration of heat-set whey protein isolate (WPI) aggregates to develop an alternative for the solvent exchange procedure. Protein aggregates were transferred from water to several solvents differing in polarity to investigate the effect on agglomeration and changes in protein composition. We show that after drying protein aggregates by evaporation from solvents with a low polarity (e.g., hexane), the protein powder shows good dispersibility in liquid oil compared to powders dried from solvents with a high polarity. This difference in dispersibility could not be related to changes in protein composition or conformation but was instead related to the reduction of attractive capillary forces between the protein aggregates during drying. Following another route, agglomeration was also prevented by applying high freezing rates prior to freeze-drying. The rheological properties of the oleogels prepared with such freeze-dried protein aggregates were shown to be similar to that of oleogels prepared using a solvent exchange procedure. This Research Article provides valuable insights in how to tune the drying process to control protein agglomeration to allow for subsequent structure formation of proteins in liquid oil.


Asunto(s)
Agregado de Proteínas , Liofilización , Aceites , Tamaño de la Partícula , Polvos , Solventes
18.
Colloids Surf B Biointerfaces ; 149: 56-63, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27721166

RESUMEN

Foam stability of casein micelle dispersions (CMDs) strongly depends on aggregate size. To elucidate the underlying mechanism, the role of interfacial and thin film properties was investigated. CMDs were prepared at 4°C and 20°C, designated as CMD4°C and CMD20°C. At equal protein concentrations, foam stability of CMD4°C (with casein micelle aggregates) was markedly higher than CMD20°C (without aggregates). Although the elastic modulus of CMD4°C was twice as that of CMD20°C at 0.005Hz, the protein adsorbed amount was slightly higher for CMD20°C than for CMD4°C, which indicated a slight difference in interfacial composition of the air/water interface. Non-linear surface dilatational rheology showed minor differences between mechanical properties of air/water interfaces stabilized by two CMDs. These differences in interfacial properties could not explain the large difference in foam stability between two CMDs. Thin film analysis showed that films made with CMD20°C drained to a more homogeneous film compared to films stabilized by CMD4°C. Large casein micelle aggregates trapped in the thin film of CMD4°C made the film more heterogeneous. The rupture time of thin films was significantly longer for CMD4°C (>1h) than for CMD20°C (<600s) at equal protein concentration. After homogenization, which broke down the aggregates, the thin films of CMD4°C became much more homogeneous, and both the rupture time of thin films and foam stability decreased significantly. In conclusion, the increased stability of foam prepared with CMD4°C appears to be the result of entrapment of casein micelle aggregates in the liquid films of the foam.


Asunto(s)
Caseínas/química , Agua/química , Adsorción , Módulo de Elasticidad , Floculación , Micelas , Reología , Propiedades de Superficie , Suspensiones
19.
J Colloid Interface Sci ; 486: 75-83, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27693552

RESUMEN

In this research we use heat-set whey protein aggregates (diameter∼200nm) as novel building blocks for structure formation in liquid oil to form oleogels. To transfer the aggregates to the oil phase, a solvent exchange procedure to sunflower oil was applied using acetone as an intermediate solvent. We found that agglomeration of the aggregates was prevented and the particle size in oil did not change from that in the initial aqueous phase. The small protein aggregates assemble into a space-spanning network, thereby providing solid-like properties to liquid oil. From oscillatory rheology we conclude that the aggregates are highly effective in forming a network. Already at ∼3% we found that G'>G″ and G' scales with protein concentration as G'∼cp5.3. Applying a fractal gel network theory to the rheological data we deduce that the gels are in the strong link regime with a fractal dimension of 2.2. The results show that protein aggregates, besides their well-known functionality in aqueous solvents, are capable of forming a network in liquid oil. This provides a novel and promising way to design oleogels with tuneable rheological properties, applicable to e.g. foods, pharmaceuticals and/or cosmetics.


Asunto(s)
Aceites de Plantas/química , Agregado de Proteínas , Proteína de Suero de Leche/química , Acetona/química , Fractales , Calor , Compuestos Orgánicos/química , Tamaño de la Partícula , Reología , Solventes/química , Aceite de Girasol
20.
Soft Matter ; 12(15): 3514-26, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26961754

RESUMEN

We studied the stability of monodispersed polystyrene latex dispersions with protein fibrils at different concentrations at pH 2 using microscopy and diffusing wave spectroscopy. At low fibril concentrations, fibrils induced bridging flocculation due to the opposite charges between fibrils and the latex particles. At higher fibril concentration the dispersions were stabilized due to steric and/or electrostatic repulsion. Upon further increasing fibril concentration, we find that the dispersion is destabilized again by depletion interaction. At even higher fibril concentration, the dispersions are stabilized again. These dispersions have a higher stability compared to the dispersions without fibrils. Interestingly, these dispersions contain single particles and small clusters of particles that do not grow beyond a certain size. Although the stabilization mechanism is not clear yet, the results from microscopy and diffusing wave spectroscopy point in the direction of a kinetic barrier that depends on fibril concentration.


Asunto(s)
Agregado de Proteínas , Proteína de Suero de Leche/química , Coloides , Difusión , Látex , Microscopía , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...