Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cureus ; 10(12): e3696, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30788187

RESUMEN

Purpose Intensity-modulated proton therapy (IMPT) treatments are increasing, however, treatment planning remains complex and prone to variability. RapidPlanTMPT (Varian Medical Systems, Palo Alto, California, USA) is a pre-clinical, proton-specific, automated knowledge-based planning solution which could reduce variability and increase efficiency. It uses a library of previous IMPT treatment plans to generate a model which can predict organ-at-risk (OAR) dose for new patients, and guide IMPT optimization. This study details and evaluates RapidPlanTMPT. Methods IMPT treatment plans for 50 head-and-neck cancer patients populated the model-library. The model was then used to create knowledge-based plans (KBPs) for 10 evaluation-patients. Model quality and accuracy were evaluated using model-provided OAR regression plots and examining the difference between predicted and achieved KBP mean dose. KBP quality was assessed through comparison with respective manual IMPT plans on the basis of boost/elective planning target volume (PTVB/PTVE) homogeneity and OAR sparing. The time to create KBPs was recorded. Results Model quality was good, with an average R2 of 0.85 between dosimetric and geometric features. The model showed high predictive accuracy with differences of <3 Gy between predicted and achieved OAR mean doses for 88/109 OARs. On average, KBPs were comparable to manual IMPT plans with differences of <0.6% in homogeneity. Only 2 of 109 OARs in KBPs had a mean dose >3 Gy more than the manual plan. On average, dose-volume histogram (DVH) predictions required 0.7 minutes while KBP optimization and dose calculation required 4.1 minutes (a 'continue optimization' phase, if required, took an additional 2.8 minutes, on average). Conclusions RapidPlanTMPT demonstrated efficiency and consistency and IMPT KBPs were comparable to manual plans. Because worse OAR sparing in a KBP was not always associated with geometric-outlier warnings, manual plan checks remain important. Such an automated planning solution could also assist in clinical trial quality assurance and overcome the learning curve associated with IMPT.

2.
J Appl Clin Med Phys ; 18(2): 44-49, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28300385

RESUMEN

AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run-time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater® phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi-spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid-range depth of multi-energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation.


Asunto(s)
Algoritmos , Benchmarking , Método de Montecarlo , Neoplasias/radioterapia , Fantasmas de Imagen , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Radiometría/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
3.
Opt Express ; 20(17): 18955-66, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23038535

RESUMEN

We present a new solution of the paraxial equation based on the Pearcey function, which is related to the Airy function and describes diffraction about a cusp caustic. The Pearcey beam displays properties similar not only to Airy beams but also Gaussian and Bessel beams. These properties include an inherent auto-focusing effect, as well as form-invariance on propagation and self-healing. We describe the theory of propagating Pearcey beams and present experimental verification of their auto-focusing and self-healing behaviour.


Asunto(s)
Luz , Modelos Teóricos , Refractometría/métodos , Dispersión de Radiación , Simulación por Computador
4.
Nat Mater ; 11(5): 432-5, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22447113

RESUMEN

The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

5.
J Opt Soc Am A Opt Image Sci Vis ; 23(6): 1349-58, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16715153

RESUMEN

We study the scattering of a partially coherent electromagnetic beam from metallic nanocylinders and analyze the effects of plasmon resonances on the coherence and polarization properties of the optical near field. We employ the coherent-mode representation for the incident field and solve the scattering problem independently for each mode by using a boundary-integral method. Our results show that the plasmon resonances may significantly affect the coherence and polarization characteristics of the near field and that partial coherence influences the energy flow in nanocylinder arrays.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2B): 036618, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15903616

RESUMEN

It is known that statistically stationary, homogeneous, and isotropic source distributions generate, in an unbounded low-loss medium, an electromagnetic field whose electric cross-spectral density tensor is proportional to the imaginary part of the infinite-space Green tensor. Using the recently established electromagnetic theory of coherent modes, we construct, in a finite spherical volume, the coherent-mode representation of the random electromagnetic field having this property. The analysis covers the fundamental case of blackbody radiation but is valid more generally; since a thermal equilibrium condition is not invoked, the electromagnetic field may have any spectral distribution. Within the scalar theory of coherent modes, which has been available for more than two decades, the analogous formulation results in the first explicit three-dimensional coherent-mode representation.

7.
Opt Express ; 12(4): 623-32, 2004 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-19474865

RESUMEN

We analyze the spectral properties of resonant transmission of light through a sub-wavelength slit in a metal film. We show that the enhanced transmission can be understood in terms of interfering surface-wave-like modes propagating in the slit. We characterize the effect of geometrical and material properties of the slit on the transmission spectrum. Furthermore, we show that the wavelength of the transmission resonance strongly depends on the surrounding medium. This effect may be utilized in sensors, imaging, and the detection of, e.g. biomolecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...