Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464076

RESUMEN

The transplantation of gene-modified autologous hematopoietic stem and progenitor cells (HSPCs) offers a promising therapeutic approach for hematological and immunological disorders. However, this strategy is often limited by the toxicities associated with traditional conditioning regimens. Antibody-based conditioning strategies targeting cKIT and CD45 antigens have shown potential in mitigating these toxicities, but their long-term safety and efficacy in clinical settings require further validation. In this study, we investigate the thrombopoietin (TPO) receptor, cMPL, as a novel target for conditioning protocols. We demonstrate that high surface expression of cMPL is a hallmark feature of long-term repopulating hematopoietic stem cells (LT-HSCs) within the adult human CD34+ HSPC subset. Targeting the cMPL receptor facilitates the separation of human LT-HSCs from mature progenitors, a delineation not achievable with cKIT. Leveraging this finding, we developed a cMPL-targeting immunotoxin, demonstrating its ability to selectively deplete host cMPLhigh LT-HSCs with a favorable safety profile and rapid clearance within 24 hours post-infusion in rhesus macaques. These findings present significant potential to advance our understanding of human hematopoiesis and enhance the therapeutic outcomes of ex vivo autologous HSPC gene therapies.

2.
Mol Ther Methods Clin Dev ; 29: 483-493, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37273902

RESUMEN

CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.

3.
Mol Ther Nucleic Acids ; 31: 452-465, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36852088

RESUMEN

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the ß-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) ß-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the ß-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human ß-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.

4.
J Clin Invest ; 130(12): 6677-6687, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897878

RESUMEN

Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from patients with sickle cell disease (SCD) induces fetal hemoglobin (HbF) without detectable toxicity, as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer-edited HSPCs in 4 nonhuman primates. We used a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer. Cas9 protein and sgRNA ribonucleoprotein complex (RNP) was electroporated into rhesus HSPCs, followed by autologous infusion after myeloablation. We found that gene edits persisted in peripheral blood (PB) and bone marrow (BM) for up to 101 weeks similarly for BCL11A enhancer- or control locus-targeted (AAVS1-targeted) cells. Biallelic BCL11A enhancer editing resulted in robust γ-globin induction, with the highest levels observed during stress erythropoiesis. Indels were evenly distributed across PB and BM lineages. Off-target edits were not observed. Nonhomologous end-joining repair alleles were enriched in engrafting HSCs. In summary, we found that edited HSCs can persist for at least 101 weeks after transplant and biallelic-edited HSCs provide substantial HbF levels in PB red blood cells, together supporting further clinical translation of this approach.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Proteínas Represoras , Animales , Humanos , Macaca mulatta , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Trasplante Autólogo
5.
Blood ; 136(23): 2667-2678, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-32659786

RESUMEN

Glucocorticoids are considered first-line therapy in a variety of eosinophilic disorders. They lead to a transient, profound decrease in circulating human eosinophils within hours of administration. The phenomenon of glucocorticoid-induced eosinopenia has been the basis for the use of glucocorticoids in eosinophilic disorders, and it has intrigued clinicians for 7 decades, yet its mechanism remains unexplained. To investigate, we first studied the response of circulating eosinophils to in vivo glucocorticoid administration in 3 species and found that the response in rhesus macaques, but not in mice, closely resembled that in humans. We then developed an isolation technique to purify rhesus macaque eosinophils from peripheral blood and performed live tracking of zirconium-89-oxine-labeled eosinophils by serial positron emission tomography/computed tomography imaging, before and after administration of glucocorticoids. Glucocorticoids induced rapid bone marrow homing of eosinophils. The kinetics of glucocorticoid-induced eosinopenia and bone marrow migration were consistent with those of the induction of the glucocorticoid-responsive chemokine receptor CXCR4, and selective blockade of CXCR4 reduced or eliminated the early glucocorticoid-induced reduction in blood eosinophils. Our results indicate that glucocorticoid-induced eosinopenia results from CXCR4-dependent migration of eosinophils to the bone marrow. These findings provide insight into the mechanism of action of glucocorticoids in eosinophilic disorders, with implications for the study of glucocorticoid resistance and the development of more targeted therapies. The human study was registered at ClinicalTrials.gov as #NCT02798523.


Asunto(s)
Médula Ósea/inmunología , Eosinófilos/inmunología , Glucocorticoides/efectos adversos , Leucopenia/inducido químicamente , Leucopenia/inmunología , Receptores CXCR4/inmunología , Animales , Médula Ósea/patología , Eosinófilos/patología , Femenino , Glucocorticoides/administración & dosificación , Humanos , Leucopenia/patología , Macaca mulatta , Masculino , Ratones
6.
Mol Ther ; 27(9): 1586-1596, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31253582

RESUMEN

Busulfan conditioning is utilized for hematopoietic stem cell (HSC) depletion in the context of HSC gene-therapy conditioning but may result in insufficient immunosuppression. In this study, we evaluated whether additional immunosuppression is required for efficient engraftment of gene-modified cells using a rhesus HSC lentiviral gene-therapy model. We transduced half of rhesus CD34+ cells with an enhanced green fluorescent protein (GFP)-encoding vector (immunogenic) and the other half with a γ-globin-encoding vector (no predicted immunogenicity). After autologous transplantation of both transduced cell populations following myeloablative busulfan conditioning (5.5 mg/kg/day for 4 days), we observed immunological rejection of GFP-transduced cells up to 3 months post-transplant and stable engraftment of γ-globin-transduced cells in two animals, demonstrating that ablative busulfan conditioning is sufficient for engraftment of gene-modified cells producing non-immunogenic proteins but insufficient to permit engraftment of immunogenic proteins. We then added immunosuppression with abatacept and sirolimus to busulfan conditioning and observed engraftment of both GFP- and γ-globin-transduced cells in two animals, demonstrating that additional immunosuppression allows for engraftment of gene-modified cells expressing immunogenic proteins. In conclusion, myeloablative busulfan conditioning should permit engraftment of gene-modified cells producing non-immunogenic proteins, while additional immunosuppression is required to prevent immunological rejection of a neoantigen.


Asunto(s)
Busulfano/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Inmunosupresores/farmacología , Transgenes , Acondicionamiento Pretrasplante , Animales , Expresión Génica , Genes Reporteros , Terapia Genética/métodos , Vectores Genéticos/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Macaca mulatta , Modelos Animales , Transducción Genética , gamma-Globinas/genética
7.
Exp Hematol ; 75: 21-25.e1, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173819

RESUMEN

Elevated fetal hemoglobin (HbF) is associated with reduced severity of sickle cell disease. Therefore, γ-globin protein levels and F-cell (HbF-positive red blood cell) percentages are used for estimation of clinical benefit. Here, we monitored transplantation-related changes in HbF and F-cell percentages for rhesus macaques (Macaca mulatta) following total body irradiation or busulfan conditioning prior to CD34+ cell transplantation. HbF protein expression peaked in the first 4-9 weeks posttransplant (0.99%-2.53%), and F-cells increased in the first 6-17 weeks posttransplant (8.7%-45.3%). HbF and F-cell ratios gradually decreased and stabilized to levels similar to those of control animals (1.96 ± 1.97% for F cells and 0.49 ± 0.19% γ-globin expression) 4-7 months post-transplant. These findings confirm and expand on previous reports of transient induction in HbF and F-cell percentages in rhesus macaques following CD34+ cell transplantation, an observation that must be taken into consideration when evaluating therapeutic strategies that aim to specifically elevate HbF expression, which are currently in clinical development.


Asunto(s)
Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/terapia , Eritrocitos Anormales/metabolismo , Hemoglobina Fetal/metabolismo , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Acondicionamiento Pretrasplante , Aloinjertos , Animales , Antígenos CD34/metabolismo , Busulfano/farmacología , Eritrocitos Anormales/patología , Macaca mulatta , Irradiación Corporal Total
8.
Am J Trop Med Hyg ; 79(2): 275-82, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18689636

RESUMEN

Argentine hemorrhagic fever (AHF), a systemic infectious disease caused by infection with Junin virus, affects several organs, and patients can show hematologic, cardiovascular, renal, or neurologic symptoms. We compared the virulence of two Junin virus strains in inbred and outbred guinea pigs with the aim of characterizing this animal model better for future vaccine/antiviral efficacy studies. Our data indicate that this passage of the XJ strain is attenuated in guinea pigs. In contrast, the Romero strain is highly virulent in Strain 13 as well as in Hartley guinea pigs, resulting in systemic infection, thrombocytopenia, elevated aspartate aminotransferase levels, and ultimately, uniformly lethal disease. We detected viral antigen in formalin-fixed, paraffin-embedded tissues. Thus, both guinea pig strains are useful animal models for lethal Junin virus (Romero strain) infection and potentially can be used for preclinical trials in vaccine or antiviral drug development.


Asunto(s)
Fiebre Hemorrágica Americana/virología , Virus Junin/clasificación , Virus Junin/patogenicidad , Animales , Antígenos Virales/análisis , Chlorocebus aethiops , Femenino , Cobayas , Hígado/virología , Bazo/virología , Células Vero , Replicación Viral
9.
Hum Vaccin ; 4(6): 410-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18443425

RESUMEN

Vaccine development for possible influenza pandemics has been challenging. Conventional vaccines such as inactivated and live attenuated virus preparations are limited in terms of production speed and capacity. DNA vaccination has emerged as a potential alternative to conventional vaccines against influenza pandemics. In this study, we use a novel, cell-free DNA manufacturing process (synDNA) to produce prototype linear DNA vaccines against the influenza virus type A/H5N1. This synDNA process does not require bacterial fermentation, so it avoids the use of antibiotic resistance genes and other nucleic acid sequences unrelated to the antigen gene expression in the actual therapeutic DNA construct. The efficacy of various vaccines expressing the hemagglutinin and neuraminidase proteins (H5N1 synDNA), hemagglutinin alone (H5 synDNA) or neuraminidase alone (N1 synDNA) was evaluated in mice. Two of the constructs (H5 synDNA and H5N1 synDNA) induced a robust protective immune response with up to 93% of treated mice surviving a lethal challenge of a virulent influenza A/Vietnam/1203/04 H5N1 isolate. In combination with a potent biological activity and simplified production footprint, these characteristics make DNA vaccines prepared with our synDNA process highly suitable as alternatives to other vaccine preparations.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/síntesis química , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de ADN/síntesis química , Vacunas de ADN/inmunología , Animales , Anticuerpos Antivirales/sangre , Temperatura Corporal , Peso Corporal , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Ratones , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Análisis de Supervivencia , Proteínas Virales/inmunología
10.
Virology ; 374(1): 198-209, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18234269

RESUMEN

The post-exposure therapeutic efficacy of injectable peramivir against highly pathogenic avian influenza type A H5N1 was evaluated in mice and in ferrets. Seventy to eighty percent of the H5N1-infected peramivir-treated mice, and 70% in the oseltamivir treated mice survived the 15-day study period, as compared to 36% in control (vehicle) group. Ferrets were infected intranasally with H5N1 followed by treatment with multiple doses of peramivir. In two of three trials, a statistically significant increase in survival over a 16-18 day period resulted from peramivir treatment, with improved survival of 40-64% in comparison to mock-treated or untreated animals. Injected peramivir mitigates virus-induced disease, reduces infectious virus titers in the lungs and brains and promotes survival in ferrets infected intranasally with this highly neurovirulent isolate. A single intramuscular peramivir injection protected mice against severe disease outcomes following infection with highly pathogenic avian influenza and multi-dose treatment was efficacious in ferrets.


Asunto(s)
Antivirales/uso terapéutico , Ciclopentanos/uso terapéutico , Guanidinas/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Ácidos Carbocíclicos , Animales , Ciclopentanos/administración & dosificación , Hurones , Guanidinas/administración & dosificación , Inyecciones Intramusculares , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Orthomyxoviridae/virología , Oseltamivir/uso terapéutico , Análisis de Supervivencia , Resultado del Tratamiento
11.
Virology ; 366(1): 212-25, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17507072

RESUMEN

During the last decade, alphaviruses became widely used for expression of heterologous genetic information and development of recombinant vaccines against a variety of human and animal pathogens. In this study, we compared a number of vectors based on the genome of Sindbis (SINV) and Venezuelan equine encephalitis (VEEV) viruses for their ability to express the Rift Valley fever virus (RVFV) envelope glycoprotein Gn and induce a protective immune response against RVFV infection. Our results suggest that (i) application of VEEV-based expression systems appears to be advantageous, when compared to similar systems designed on the basis of the SINV genome. (ii) Alphavirus-specific E3 and E2 proteins and furin-specific cleavage sites can be used for engineering secreted forms of the proteins. (iii) Alphaviruses can be modified for expression of the large fragments of heterologous proteins on the surface of chimeric, infectious viral particles. Thus, alphavirus-based expression systems may have the potential for a broader application beyond their current use as replicons or double-subgenomic vectors.


Asunto(s)
Alphavirus/genética , Virus de la Fiebre del Valle del Rift/genética , Proteínas del Envoltorio Viral/genética , Animales , Antígenos Virales/genética , Línea Celular , Cricetinae , Regulación Viral de la Expresión Génica , Vectores Genéticos , Plásmidos , ARN Viral/genética , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...