Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(748): eadl2720, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776391

RESUMEN

We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-µg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).


Asunto(s)
Anticuerpos Biespecíficos , Claudinas , Macaca fascicularis , Linfocitos T , Animales , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/farmacocinética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Claudinas/metabolismo , Ratones , ARN/metabolismo , Femenino , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Liposomas , Nanopartículas
2.
Cell ; 187(6): 1363-1373.e12, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366591

RESUMEN

In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus. In challenge studies, BNT166a and BNT166c provided complete protection from vaccinia, clade I, and clade IIb MPXV. Furthermore, immunization with BNT166a was 100% effective at preventing death and at suppressing lesions in a lethal clade I MPXV challenge in cynomolgus macaques. These findings support the clinical evaluation of BNT166, now underway (NCT05988203).


Asunto(s)
Monkeypox virus , Mpox , Vacuna contra Viruela , Animales , Humanos , Ratones , Macaca fascicularis , Monkeypox virus/genética , Mpox/inmunología , Mpox/prevención & control , Vacunas Combinadas , Virus Vaccinia/genética
3.
Hum Vaccin Immunother ; 20(1): 2315659, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38407186

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to urgent actions by innovators, vaccine developers, regulators, and other stakeholders to ensure public access to protective vaccines while maintaining regulatory agency standards. Although development timelines for vaccines against SARS-CoV-2 were much quicker than standard vaccine development timelines, regulatory requirements for efficacy and safety evaluations, including the volume and quality of data collected, were upheld. Rolling review processes supported by sponsors and regulatory authorities enabled rapid assessment of clinical data as well as emergency use authorization. Post-authorization and pharmacovigilance activities enabled the quantity and breadth of post-marketing safety information to quickly exceed that generated from clinical trials. This paper reviews safety and reactogenicity data for the BNT162 vaccine candidates, including BNT162b2 (Comirnaty, Pfizer/BioNTech COVID-19 vaccine) and bivalent variant-adapted BNT162b2 vaccines, from preclinical studies, clinical trials, post-marketing surveillance, and real-world studies, including an unprecedentedly large body of independent evidence.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Mercadotecnía , Farmacovigilancia , SARS-CoV-2 , Vacunas Combinadas
4.
Oncoimmunology ; 12(1): 2255041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860278

RESUMEN

IMAB362/Zolbetuximab, a first-in-class IgG1 antibody directed against the cancer-associated gastric-lineage marker CLDN18.2, has recently been reported to have met its primary endpoint in two phase 3 trials as a first-line treatment in combination with standard of care chemotherapy in CLDN18.2-positive Her2 negative advanced gastric cancer. Here we characterize the preclinical pharmacology of BNT141, a nucleoside-modified RNA therapeutic encoding the sequence of IMAB362/Zolbetuximab, formulated in lipid nanoparticles (LNP) for liver uptake. We show that the mRNA-encoded antibody displays a stable pharmacokinetic profile in preclinical animal models, mediates CLDN18.2-restricted cytotoxicity comparable to IMAB362 recombinant protein and inhibits human tumor xenograft growth in immunocompromised mice. BNT141 administration did not perpetrate mortality, clinical signs of toxicity, or gastric pathology in animal studies. A phase 1/2 clinical trial with BNT141 mRNA-LNP has been initiated in advanced CLDN18.2-expressing solid cancers (NCT04683939).


Asunto(s)
Neoplasias Gástricas , Animales , Humanos , Ratones , Moléculas de Adhesión Celular , Claudinas/inmunología , ARN Mensajero/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Anticuerpos/genética , Anticuerpos/inmunología
5.
Vaccines (Basel) ; 11(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36851293

RESUMEN

The emergence of SARS-CoV-2 at the end of 2019 required the swift development of a vaccine to address the pandemic. Nonclinical GLP-compliant studies in Wistar Han rats were initiated to assess the local tolerance, systemic toxicity, and immune response to four mRNA vaccine candidates encoding immunogens derived from the spike (S) glycoprotein of SARS-CoV-2, encapsulated in lipid nanoparticles (LNPs). Vaccine candidates were administered intramuscularly once weekly for three doses at 30 and/or 100 µg followed by a 3-week recovery period. Clinical pathology findings included higher white blood cell counts and acute phase reactant concentrations, lower platelet and reticulocyte counts, and lower RBC parameters. Microscopically, there was increased cellularity (lymphocytes) in the lymph nodes and spleen, increased hematopoiesis in the bone marrow and spleen, acute inflammation and edema at the injection site, and minimal hepatocellular vacuolation. These findings were generally attributed to the anticipated immune and inflammatory responses to the vaccines, except for hepatocyte vacuolation, which was interpreted to reflect hepatocyte LNP lipid uptake, was similar between candidates and resolved or partially recovered at the end of the recovery phase. These studies demonstrated safety and tolerability in rats, supporting SARS-CoV-2 mRNA-LNP vaccine clinical development.

6.
Reprod Toxicol ; 103: 28-35, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34058573

RESUMEN

BNT162b2 is a vaccine developed to prevent coronavirus disease 2019 (COVID-19). BNT162b2 is a lipid nanoparticle formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein locked in its prefusion conformation. A developmental and reproductive toxicity study was conducted in rats according to international regulatory guidelines. The full human BNT162b2 dose of 30 µg mRNA/dose (>300 times the human dose on a mg/kg basis) was administered intramuscularly to 44 female rats 21 and 14 days prior to mating and on gestation days 9 and 20. Half of the rats were subject to cesarean section and full fetal examination at the end of gestation, and the other half were allowed to deliver and were monitored to the end of lactation. A robust neutralizing antibody response was confirmed prior to mating and at the end of gestation and lactation. The presence of neutralizing antibodies was also confirmed in fetuses and offspring. Nonadverse effects, related to the local injection site reaction, were noted in dams as expected from other animal studies and consistent with observations in humans. There were no effects of BNT162b2 on female mating performance, fertility, or any ovarian or uterine parameters nor on embryo-fetal or postnatal survival, growth, physical development or neurofunctional development in the offspring through the end of lactation. Together with the safety profile in nonpregnant people, this ICH-compliant nonclinical safety data supports study of BNT162b2 in women of childbearing potential and pregnant and lactating women.


Asunto(s)
Vacunas contra la COVID-19/toxicidad , Fertilidad , Desarrollo Fetal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162 , Vacunas contra la COVID-19/farmacología , Cesárea , Femenino , Lactancia , Embarazo , Ratas , Ratas Wistar
7.
Methods Mol Biol ; 1841: 189-206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30259488

RESUMEN

AAA+ proteases (ATPases associated with various cellular activities) shape the cellular protein pool in response to environmental conditions. A prerequisite for understanding the underlying recognition and degradation principles is the identification of as many protease substrates as possible. Most previous studies made use of inactive protease variants to trap substrates, which were identified by 2D-gel based proteomics. Since this method is known for limitations in the identification of low-abundant proteins or proteins with many transmembrane domains, we established a trapping approach that overcomes these limitations. We used a proteolytically inactive FtsH variant (FtsHtrap) of Escherichia coli (E. coli) that is still able to bind and translocate substrates into the proteolytic chamber but no longer able to degrade proteins. Proteins associated with FtsHtrap or FtsHwt (proteolytically active FtsH) were purified, concentrated by an 1D-short gel, and identified by LC-coupled mass spectrometry (LC-MS) followed by label-free quantification. The identification of four known FtsH substrates validated this approach and suggests that it is generally applicable to AAA+ proteases.


Asunto(s)
Pruebas de Enzimas , Péptido Hidrolasas , Proteoma , Proteómica , Proteasas ATP-Dependientes , Cromatografía Líquida de Alta Presión , Ciencia de los Datos , Pruebas de Enzimas/métodos , Escherichia coli/metabolismo , Espectrometría de Masas , Péptido Hidrolasas/metabolismo , Péptidos/química , Proteolisis , Proteómica/métodos , Especificidad por Sustrato
8.
Proteomics ; 18(13): e1800080, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29710379

RESUMEN

Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC (stable isotope labeling with amino acids in cell culture) mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example, the superoxide stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteasa La/metabolismo , Proteómica/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteasa La/química , Proteasa La/genética , Proteolisis , Especificidad por Sustrato
9.
Front Microbiol ; 9: 3285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30692974

RESUMEN

Lipopolysaccharides (LPS) in the outer membrane of Gram-negative bacteria provide the first line of defense against antibiotics and other harmful compounds. LPS biosynthesis critically depends on LpxC catalyzing the first committed enzyme in this process. In Escherichia coli, the cellular concentration of LpxC is adjusted in a growth rate-dependent manner by the FtsH protease making sure that LPS biosynthesis is coordinated with the cellular demand. As a result, LpxC is stable in fast-growing cells and prone to degradation in slow-growing cells. One of the factors involved in this process is the alarmone guanosine tetraphosphate (ppGpp) but previous studies suggested the involvement of yet unknown factors in LpxC degradation. We established a quantitative proteomics approach aiming at the identification of proteins that are associated with LpxC and/or FtsH at high or low growth rates. The identification of known LpxC and FtsH interactors validated our approach. A number of proteins involved in fatty acid biosynthesis and degradation, including the central regulator FadR, were found in the LpxC and/or FtsH interactomes. Another protein associated with LpxC and FtsH was WaaH, a LPS-modifying enzyme. When overproduced, several members of the LpxC/FtsH interactomes were able to modulate LpxC proteolysis. Our results go beyond the previously established link between LPS and phospholipid biosynthesis and uncover a far-reaching network that controls LPS production by involving multiple enzymes in fatty acid metabolism, phospholipid biosynthesis and LPS modification.

10.
Sci Rep ; 7(1): 12415, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963555

RESUMEN

One fifth to one quarter of the human population is asymptomatically, naturally and persistently colonised by Staphylococcus aureus. Observational human studies indicate that although the whole population is intermittently exposed, some individuals lose S. aureus rapidly. Others become persistent carriers, as assessed by nasal cultures, with many individuals colonised for decades. Current animal models of S. aureus colonisation are expensive and normally require antibiotics. Importantly, these animal models have not yet contributed to our poor understanding of the dichotomy in human colonisation status. Here, we identify a single strain of S. aureus found to be persistently colonising the gastrointestinal tract of BALB/c mice. Phylogenetic analyses suggest it diverged from a human ST15 lineage in the recent past. We show that murine carriage of this organism occurs in the bowel and nares, is acquired early in life, and can persist for months. Importantly, we observe the development of persistent and non-persistent gastrointestinal carriage states in genetically identical mice. We developed a needle- and antibiotic-free model in which we readily induced S. aureus colonisation of the gastrointestinal tract experimentally by environmental exposure. Using our experimental model, impact of adaptive immunity on S. aureus colonisation could be assessed. Vaccine efficacy to eliminate colonisation could also be investigated using this model.


Asunto(s)
Portador Sano/microbiología , Modelos Animales de Enfermedad , Tracto Gastrointestinal/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Animales , Humanos , Ratones Endogámicos BALB C
11.
PLoS One ; 12(10): e0186386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29078207

RESUMEN

Hsp90 is a molecular chaperone involved in the regulation and maturation of kinases and transcription factors. In Caenorhabditis elegans, it contributes to the development of fertility, maintenance of muscle structure, the regulation of heat-shock response and dauer state. To understand the consequences of Hsp90-depletion, we studied Hsp90 RNAi-treated nematodes by DNA microarrays and mass spectrometry. We find that upon development of phenotypes the levels of chaperones and Hsp90 cofactors are increased, while specific proteins related to the innate immune response are depleted. In microarrays, we further find many differentially expressed genes related to gonad and larval development. These genes form an expression cluster that is regulated independently from the immune response implying separate pathways of Hsp90-involvement. Using fluorescent reporter strains for the differentially expressed immune response genes skr-5, dod-24 and clec-60 we observe that their activity in intestinal tissues is influenced by Hsp90-depletion. Instead, effects on the development are evident in both gonad arms. After Hsp90-depletion, changes can be observed in early embryos and adults containing fluorescence-tagged versions of SEPA-1, CAV-1 or PUD-1, all of which are downregulated after Hsp90-depletion. Our observations identify molecular events for Hsp90-RNAi induced phenotypes during development and immune responses, which may help to separately investigate independent Hsp90-influenced processes that are relevant during the nematode's life and development.


Asunto(s)
Regulación hacia Abajo , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Inmunidad Innata , Nematodos/inmunología , Nematodos/metabolismo , Oocitos/citología , Animales , Expresión Génica , Redes Reguladoras de Genes , Lectinas/metabolismo , Nematodos/citología , Transcripción Genética
12.
Biol Chem ; 398(5-6): 687-699, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28282288

RESUMEN

Quantitative mass spectrometry approaches are used for absolute and relative quantification in global proteome studies. To date, relative and absolute quantification techniques are available that differ in quantification accuracy, proteome coverage, complexity and robustness. This review focuses on most common relative or absolute quantification strategies exemplified by three experimental studies. A label-free relative quantification approach was performed for the investigation of the membrane proteome of sensory cilia to the depth of olfactory receptors in Mus musculus. A SILAC-based relative quantification approach was successfully applied for the identification of core components and transient interactors of the peroxisomal importomer in Saccharomyces cerevisiae. Furthermore, AQUA using stable isotopes was exemplified to unraveling the prenylome influenced by novel prenyltransferase inhibitors. Characteristic enrichment and fragmentation strategies for a robust quantification of the prenylome are also summarized.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Animales , Membrana Celular/metabolismo , Cilios/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo
13.
BMJ Open ; 6(6): e010975, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27256090

RESUMEN

OBJECTIVE: The aim of this pilot study was to determine risk factors, including Staphylococcus aureus nasal carriage, for dermatitis in submariners during a submarine patrol. PARTICIPANTS AND METHODS: 36 submariners undertaking a submerged 6-week patrol participated in the study. Severity of dermatitis and its impact was assessed using visual analogue scales and questionnaires at baseline and weekly throughout the patrol. S. aureus carriage levels in submariners were determined by nasal swabbing at baseline and shortly before disembarking the submarine. Occurrence of any skin or soft tissue infections (SSTI) were reported to the medical officer and swabs of the area were taken for subsequent analysis. RESULTS: S. aureus carriers were significantly more likely than non-carriers to have previously received treatment for a cutaneous abscess (39% vs 5%, OR=13 (95% CI 1.3 to 130)) with a trend to being submariners longer (p=0.051). Skin scores at baseline and on patrol were not significantly associated with carriage status. Higher dermatitis scores were observed in those who had been submariners longer (p=0.045). Smoking and allergies were not found to be linked to carriage status or skin health score in this cohort. CONCLUSIONS: This small pilot study investigates S. aureus carriage status and skin health in submariners. Length of submarine service but not S. aureus carriage was identified as a risk factor for worsening skin health in this small cohort during a 6-week patrol. This does not support S. aureus decolonisation to improve skin health in this population. Further investigation into causes of dermatitis in submariners is required. This data supports a better understanding of the potential impact of exposure to environmental factors that could affect skin health in submariners.


Asunto(s)
Portador Sano/epidemiología , Dermatitis/diagnóstico , Personal Militar/estadística & datos numéricos , Infecciones Estafilocócicas/epidemiología , Adulto , Dermatitis/microbiología , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Proyectos Piloto , Estudios Prospectivos , Factores de Riesgo , Encuestas y Cuestionarios , Reino Unido , Escala Visual Analógica
14.
PLoS One ; 11(5): e0154705, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27228181

RESUMEN

PURPOSE: To develop and validate a sensitive and specific method of abscess enumeration and quantification in a preclinical model of Staphylococcus aureus infection. METHODS: S. aureus infected murine kidneys were fixed in paraformaldehyde, impregnated with gadolinium, and embedded in agar blocks, which were subjected to 3D magnetic resonance microscopy on a 9.4T MRI scanner. Image analysis techniques were developed, which could identify and quantify abscesses. The result of this imaging was compared with histological examination. The impact of a S. aureus Sortase A vaccination regime was assessed using the technique. RESULTS: Up to 32 murine kidneys could be imaged in a single MRI run, yielding images with voxels of about 25 µm3. S. aureus abscesses could be readily identified in blinded analyses of the kidneys after 3 days of infection, with low inter-observer variability. Comparison with histological sections shows a striking correlation between the two techniques: all presumptive abscesses identified by MRI were confirmed histologically, and histology identified no abscesses not evident on MRI. In view of this, simulations were performed assuming that both MRI reconstruction, and histology examining all sections of the tissue, were fully sensitive and specific at abscess detection. This simulation showed that MRI provided more sensitive and precise estimates of abscess numbers and volume than histology, unless at least 5 histological sections are taken through the long axis of the kidney. We used the MRI technique described to investigate the impact of a S. aureus Sortase A vaccine. CONCLUSION: Post mortem MRI scanning of large batches of fixed organs has application in the preclinical assessment of S. aureus vaccines.


Asunto(s)
Absceso , Enfermedades Renales , Riñón , Imagen por Resonancia Magnética , Infecciones Estafilocócicas , Vacunas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Absceso/diagnóstico por imagen , Absceso/inmunología , Absceso/microbiología , Administración Intravenosa , Animales , Femenino , Riñón/diagnóstico por imagen , Riñón/inmunología , Riñón/microbiología , Enfermedades Renales/diagnóstico por imagen , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/farmacocinética
15.
Proc Natl Acad Sci U S A ; 113(22): E3101-10, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185949

RESUMEN

Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection.


Asunto(s)
Absceso/etiología , Apoptosis , Bacteriemia/etiología , Proteínas Bacterianas/genética , Mutación/genética , ARN no Traducido/genética , Infecciones Estafilocócicas/complicaciones , Factores de Virulencia/genética , Absceso/patología , Animales , Bacteriemia/patología , Femenino , Regulación Bacteriana de la Expresión Génica , Células HeLa , Hemólisis , Humanos , Ratones , Ratones Endogámicos BALB C , Proteómica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/patogenicidad , Virulencia
16.
Sci Rep ; 5: 17058, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26593036

RESUMEN

Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas Nucleares/química , Fosfoproteínas Fosfatasas/química , Receptores de Glucocorticoides/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 288(27): 19698-714, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23696645

RESUMEN

Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Peroxinitroso/farmacología , Proteómica , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Ácido Peroxinitroso/química
18.
Methods Mol Biol ; 893: 387-403, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22665313

RESUMEN

Because of its versatile chemical properties, the amino acid cysteine plays a variety of vital roles in proteins. It can form structure-stabilizing elements (e.g., disulfide bonds), coordinate metal cofactors and is part of the catalytic center of many enzymes. Recently, a new role has been discovered for cysteine: so-called redox-sensitive proteins use the thiol group of cysteine as a specific sensor for Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). The oxidation of such a redox-active cysteine, e.g., under conditions of elevated cellular ROS or RNS levels (oxidative or nitrosative stress), often results in a reversible thiol modification. This, in turn, might lead to structural changes and altered protein activity. When the oxidative stress subsides, cellular antioxidant systems, including thioredoxin and glutathione can reduce the redox-active cysteine and restore the original structure and activity of the redox-sensitive protein. This makes oxidative thiol modifications an attractive mechanism for cellular redox sensing and signaling.To study the target cysteines of oxidative and nitrosative stress and to quantify the extent of the thiol modifications generated under these conditions, we have recently developed a thiol trapping technique using isotope coded affinity tag (ICAT) chemistry (1). With this method, reduced cysteines are selectively labeled with the isotopically light form of ICAT and oxidized cysteines with the isotopically heavy form of ICAT. Thus we could globally quantify the ratio of reduced and oxidized cysteines in cellular proteins based on the modified peptide masses. Here, we present an expansion of this method, which we term NOxICAT, because it uses ICAT chemistry to detect changes in thiol modifications of proteins upon Nitrosative and Oxidative stress. The NOxICAT-method is a highly specific and quantitative method to study the global changes in the thiol redox state of cellular proteins under a variety of physiological and pathological stress conditions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Técnicas de Cultivo , Cisteína/química , Cisteína/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Marcaje Isotópico , Espectrometría de Masas , Oxidación-Reducción , Estrés Oxidativo , Proteolisis , Proteómica , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tripsina/química
19.
Chem Commun (Camb) ; 47(37): 10335-7, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21853174

RESUMEN

We have developed a synthesis of phosphoarginine containing peptides using a bis(2,2,2-trichloroethyl) protected phosphoarginine derivative as building block. Binding studies and computer modelling demonstrate the ability of the SH2 domain from Src kinase to recognize a phosphoarginine-containing peptide in a phosphoryl group-dependent manner.


Asunto(s)
Arginina/análogos & derivados , Péptidos/química , Péptidos/metabolismo , Dominios Homologos src , Arginina/química , Ligandos , Modelos Moleculares , Compuestos Organofosforados/química , Péptidos/síntesis química , Fosfotirosina/química , Fosfotirosina/metabolismo , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...