Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 52: 13-23, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30468969

RESUMEN

In Magnetic Resonance Imaging, mapping of the static magnetic field and the magnetic susceptibility is based on multidimensional phase measurements. Phase data are ambiguous and have to be unwrapped to their true range in order to exhibit a correct representation of underlying features. High-resolution imaging at ultra-high fields, where susceptibility and phase contrast are natural tools, can generate large datasets, which tend to dramatically increase computing time demands for spatial unwrapping algorithms. This article describes a novel method, URSULA, which introduces an artificial volume compartmentalisation that allows large-scale unwrapping problems to be broken down, making URSULA ideally suited for computational parallelisation. In the presented study, URSULA is illustrated with a quality-guided unwrapping approach. Validation is performed on numerical data and an application on a high-resolution measurement, at the clinical field strength of 3T is demonstrated. In conclusion, URSULA allows for a reduction of the problem size, a substantial speed-up and for handling large data sets without sacrificing the overall accuracy of the resulting phase information.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Humanos , Imagenología Tridimensional
2.
AJNR Am J Neuroradiol ; 37(8): 1418-21, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27032975

RESUMEN

BACKGROUND AND PURPOSE: Hyperattenuated cerebral areas on postinterventional CT are a common finding after endovascular stroke treatment. There is uncertainty about the extent to which these hyperattenuated areas correspond to hemorrhage or contrast agent that extravasated into infarcted parenchyma during angiography. We evaluated whether it is possible to distinguish contrast extravasation from blood on MR imaging. MATERIALS AND METHODS: We examined the influence of iodinated contrast agents on T1, T2, and T2* and magnetic susceptibility in a phantom model and an ex vivo animal model. We determined T1, T2, and T2* relaxation times and magnetic susceptibility of iopamidol and iopromide in dilutions of 1:1; 1:2; 1:4; 1:10; and 1:100 with physiologic saline solution. We then examined the appearance of intracerebral iopamidol on MR imaging in an ex vivo animal model. To this end, we injected iopamidol into the brain of a deceased swine. RESULTS: Iopamidol and iopromide cause a negative susceptibility shift and T1, T2, and T2* shortening. The effects, however, become very small in dilutions of 1:10 and higher. Undiluted iopamidol, injected directly into the brain parenchyma, did not cause visually distinctive signal changes on T1-weighted spin-echo, T2-weighted turbo spin-echo, and T2*-weighted gradient recalled-echo imaging. CONCLUSIONS: It is unlikely that iodinated contrast agents extravasated into infarcted brain parenchyma cause signal changes that mimic hemorrhage on T1WI, T2WI, and T2*WI. Our results imply that extravasated contrast agents can be distinguished from hemorrhage on MR imaging.


Asunto(s)
Hemorragia Cerebral/diagnóstico por imagen , Medios de Contraste , Extravasación de Materiales Terapéuticos y Diagnósticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Humanos , Yohexol/análogos & derivados , Yopamidol , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...