Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 397: 122655, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32388089

RESUMEN

Knowledge of exposure to a wide range of chemicals, and the spatio-temporal variability thereof, is urgently needed in the context of protecting and restoring aquatic ecosystems. This paper discusses a computational material flow analysis to predict the occurrence of thousands of man-made organic chemicals on a European scale, based on a novel temporally and spatially resolved modelling framework. The goal was to increase understanding of pressures by emerging chemicals and to complement surface water monitoring data. The ambition was to provide a first step towards a "real-life" mixture exposure situation accounting for as many chemicals as possible. Comparison of simulated concentrations and chemical monitoring data for 226 substance/basin combinations showed that the simulated concentrations were accurate on average. For 65% and 90% of substance/basin combinations the error was within one and two orders of magnitude respectively. An analysis of the relative importance of uncertainties revealed that inaccuracies in use volume or use type information contributed most to the error for individual substances. To resolve this, we suggest better registration of use types of industrial chemicals, investigation of presence/absence of industrial chemicals in wastewater and runoff samples and more scientific information exchange.

2.
Environ Sci Process Impacts ; 21(9): 1489-1497, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31389449

RESUMEN

Persistence of chemical pollutants is difficult to measure in the field. Junge variability-lifetime relationships, correlating the relative standard deviation of measured concentrations with residence time, have been used to estimate persistence of air pollutants. Junge relationships for micropollutants in rivers could provide evidence that half-lives of compounds estimated from laboratory and field data are representative of half-lives in a specific system, location and time. Here, we explore the hypothesis that Junge relationships could exist for micropollutants in the Danube river using: (1) concentrations of six hypothetical chemicals modeled using the STREAM-EU fate and transport model, and (2) concentrations of nine micropollutants measured in the third Joint Danube Survey (JDS3) combined with biodegradation half-lives reported in the literature. Using STREAM-EU, we found that spatial and temporal variability in modeled concentrations was inversely correlated with half-life for the four micropollutants with half-lives ≤90 days. For these four modeled micropollutants, we found Junge relationships with slopes significantly different from zero in the temporal variability of concentrations at 88% of the 67 JDS3 measurement sites, and in the spatial variability of concentrations on 36% out of 365 modeled days. A Junge relationship significant at the 95% confidence level was not found in the spatial variability of nine micropollutants measured in the JDS3, nor in STREAM-EU-modeled concentrations extracted for the dates and locations of the JDS3. Nevertheless, our model scenarios suggest that Junge relationships might be found in future measurements of spatial and temporal variability of micropollutants, especially in temporal variability of pollutants measured downstream in the Danube river.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Modelos Teóricos
3.
Sci Total Environ ; 576: 720-737, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810758

RESUMEN

Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...