Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Ecol Evol ; 3(12): 1731-1742, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768021

RESUMEN

Males and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.


Asunto(s)
Oncorhynchus mykiss , Animales , Femenino , Masculino , Fenotipo , Cromosomas Sexuales
3.
PLoS One ; 14(7): e0217711, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31339895

RESUMEN

Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Oncorhynchus mykiss/fisiología , Salmón/fisiología , Animales , California , Cambio Climático , Humanos , Oregon , Océano Pacífico , Estaciones del Año , Agua de Mar , Temperatura
4.
Evol Appl ; 11(9): 1518-1526, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30344624

RESUMEN

It is now routinely possible to generate genomics-scale datasets for nonmodel species; however, many questions remain about how best to use these data for conservation and management. Some recent genomics studies of anadromous Pacific salmonids have reported a strong association between alleles at one or a very few genes and a key life history trait (adult migration timing) that has played an important role in defining conservation units. Publication of these results has already spurred a legal challenge to the existing framework for managing these species, which was developed under the paradigm that most phenotypic traits are controlled by many genes of small effect, and that parallel evolution of life history traits is common. But what if a key life history trait can only be expressed if a specific allele is present? Does the current framework need to be modified to account for the new genomics results, as some now propose? Although this real-world example focuses on Pacific salmonids, the issues regarding how genomics can inform us about the genetic basis of phenotypic traits, and what that means for applied conservation, are much more general. In this perspective, we consider these issues and outline a general process that can be used to help generate the types of additional information that would be needed to make informed decisions about the adequacy of existing conservation and management frameworks.

5.
Ecol Lett ; 20(1): 50-59, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27891770

RESUMEN

Predicting species responses to climate change is a central challenge in ecology. These predictions are often based on lab-derived phenomenological relationships between temperature and fitness metrics. We tested one of these relationships using the embryonic stage of a Chinook salmon population. We parameterised the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.


Asunto(s)
Longevidad , Ríos/química , Salmón/fisiología , Termotolerancia , Animales , California , Desarrollo Embrionario , Especies en Peligro de Extinción , Modelos Biológicos , Óvulo/crecimiento & desarrollo , Salmón/crecimiento & desarrollo , Estaciones del Año , Temperatura
6.
J Appl Ecol ; 51(6): 1554-1563, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25552746

RESUMEN

Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change.

7.
Conserv Biol ; 27(6): 1222-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24299088

RESUMEN

Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas.


Asunto(s)
Organismos Acuáticos/fisiología , Cambio Climático , Conservación de los Recursos Naturales/legislación & jurisprudencia , Animales , Biodiversidad , Especies en Peligro de Extinción , Modelos Teóricos , Medición de Riesgo , Estados Unidos
8.
PLoS One ; 8(8): e71552, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990959

RESUMEN

Worldwide, sturgeons (Acipenseridae) are among the most endangered fishes due to habitat degradation, overfishing, and inherent life history characteristics (long life span, late maturation, and infrequent spawning). As most sturgeons are anadromous, a considerable portion of their life history occurs in estuarine and marine environments where they may encounter unique threats (e.g., interception in non-target fisheries). Of the 16 marine-oriented species, 12 are designated as Critically Endangered by the IUCN, and these include species commercially harvested. We review important research tools and techniques (tagging, electronic tagging, genetics, microchemistry, observatory) and discuss the comparative utility of these techniques to investigate movements, migrations, and life-history characteristics of sturgeons. Examples are provided regarding what the applications have revealed regarding movement and migration and how this information can be used for conservation and management. Through studies that include Gulf (Acipenser oxyrinchus desotoi) and Green Sturgeon (A. medirostris), we illustrate what is known about well-studied species and then explore lesser-studied species. A more complete picture of migration is available for North American sturgeon species, while European and Asian species, which are among the most endangered sturgeons, are less understood. We put forth recommendations that encourage the support of stewardship initiatives to build awareness and provide key information for population assessment and monitoring.


Asunto(s)
Peces/genética , Peces/fisiología , Acústica , Migración Animal , Animales , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente/métodos , Femenino , Explotaciones Pesqueras , Peces/metabolismo , Técnicas Genéticas , Estadios del Ciclo de Vida , Masculino , Tecnología de Sensores Remotos , Telemetría
9.
PLoS One ; 7(9): e45852, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029274

RESUMEN

The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41-51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36-37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.


Asunto(s)
Migración Animal , Peces , Modelos Biológicos , Análisis de Varianza , Distribución Animal , Animales , Área Bajo la Curva , Modelos Estadísticos , Océano Pacífico , Curva ROC , Estaciones del Año
10.
PLoS One ; 6(9): e25156, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21966442

RESUMEN

The green sturgeon (Acipenser medirostris) is a highly migratory, oceanic, anadromous species with a complex life history that makes it vulnerable to species-wide threats in both freshwater and at sea. Green sturgeon population declines have preceded legal protection and curtailment of activities in marine environments deemed to increase its extinction risk. Yet, its marine habitat is poorly understood. We built a statistical model to characterize green sturgeon marine habitat using data from a coastal tracking array located along the Siletz Reef near Newport, Oregon, USA that recorded the passage of 37 acoustically tagged green sturgeon. We classified seafloor physical habitat features with high-resolution bathymetric and backscatter data. We then described the distribution of habitat components and their relationship to green sturgeon presence using ordination and subsequently used generalized linear model selection to identify important habitat components. Finally, we summarized depth and temperature recordings from seven green sturgeon present off the Oregon coast that were fitted with pop-off archival geolocation tags. Our analyses indicated that green sturgeon, on average, spent a longer duration in areas with high seafloor complexity, especially where a greater proportion of the substrate consists of boulders. Green sturgeon in marine habitats are primarily found at depths of 20-60 meters and from 9.5-16.0°C. Many sturgeon in this study were likely migrating in a northward direction, moving deeper, and may have been using complex seafloor habitat because it coincides with the distribution of benthic prey taxa or provides refuge from predators. Identifying important green sturgeon marine habitat is an essential step towards accurately defining the conditions that are necessary for its survival and will eventually yield range-wide, spatially explicit predictions of green sturgeon distribution.


Asunto(s)
Ecosistema , Peces , Animales , Océano Pacífico
11.
Conserv Biol ; 25(5): 932-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21797926

RESUMEN

To remain viable, populations must be resilient to both natural and human-caused environmental changes. We evaluated anthropogenic effects on spatial connections among populations of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) (designated as threatened under the U.S. Endangered Species Act) in the lower Columbia and Willamette rivers. For several anthropogenic-effects scenarios, we used graph theory to characterize the spatial relation among populations. We plotted variance in population size against connectivity among populations. In our scenarios, reduced habitat quality decreased the size of populations and hydropower dams on rivers led to the extirpation of several populations, both of which decreased connectivity. Operation of fish hatcheries increased connectivity among populations and led to patchy or panmictic populations. On the basis of our results, we believe recolonization of the upper Cowlitz River by fall and spring Chinook and winter steelhead would best restore metapopulation structure to near-historical conditions. Extant populations that would best conserve connectivity would be those inhabiting the Molalla (spring Chinook), lower Cowlitz, or Clackamas (fall Chinook) rivers and the south Santiam (winter steelhead) and north fork Lewis rivers (summer steelhead). Populations in these rivers were putative sources; however, they were not always the most abundant or centrally located populations. This result would not have been obvious if we had not considered relations among populations in a metapopulation context. Our results suggest that dispersal rate strongly controls interactions among the populations that comprise salmon metapopulations. Thus, monitoring efforts could lead to understanding of the true rates at which wild and hatchery fish disperse. Our application of graph theory allowed us to visualize how metapopulation structure might respond to human activity. The method could be easily extended to evaluations of anthropogenic effects on other stream-dwelling populations and communities and could help prioritize among competing conservation measures.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Demografía , Ecosistema , Actividades Humanas , Oncorhynchus mykiss/crecimiento & desarrollo , Salmón/crecimiento & desarrollo , Animales , Humanos , Oregon , Densidad de Población , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...