Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
NMR Biomed ; 37(3): e5060, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37937465

RESUMEN

NMR spectroscopy is a mainstay of metabolic profiling approaches to investigation of physiological and pathological processes. The one-dimensional proton pulse sequences typically used in phenotyping large numbers of samples generate spectra that are rich in information but where metabolite identification is often compromised by peak overlap. Recently developed pure shift (PS) NMR spectroscopy, where all J-coupling multiplicities are removed from the spectra, has the potential to simplify the complex proton NMR spectra that arise from biosamples and hence to aid metabolite identification. Here we have evaluated two complementary approaches to spectral simplification: the HOBS (band-selective with real-time acquisition) and the PSYCHE (broadband with pseudo-2D interferogram acquisition) pulse sequences. We compare their relative sensitivities and robustness for deconvolving both urine and serum matrices. Both methods improve resolution of resonances ranging from doublets, triplets and quartets to more complex signals such as doublets of doublets and multiplets in highly overcrowded spectral regions. HOBS is the more sensitive method and takes less time to acquire in comparison with PSYCHE, but can introduce unavoidable artefacts from metabolites with strong couplings, whereas PSYCHE is more adaptable to these types of spin system, although at the expense of sensitivity. Both methods are robust and easy to implement. We also demonstrate that strong coupling artefacts contain latent connectivity information that can be used to enhance metabolite identification. Metabolite identification is a bottleneck in metabolic profiling studies. In the case of NMR, PS experiments can be included in metabolite identification workflows, providing additional capability for biomarker discovery.


Asunto(s)
Espectroscopía de Resonancia Magnética , Metabolómica , Líquidos Corporales/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Protones , Humanos , Orina/fisiología , Suero/metabolismo
2.
J Pharm Biomed Anal ; 226: 115254, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36701879

RESUMEN

The evaluation of joint disease using synovial fluid is an emerging field of metabolic profiling. The analysis is challenged by multiple macromolecules which can obscure the small molecule chemistry. The use of protein precipitation and extraction has been evaluated previously, but not in synovial fluid. We systematically review the published NMR spectroscopy methods of synovial fluid analysis and investigated the efficacy of three different protein precipitation techniques: methanol, acetonitrile and trichloroacetic acid. The trichloroacetic wash removed the most protein. However, metabolite recoveries were universally very poor. Acetonitrile liquid/liquid extraction gave metabolite gains from four unknown compounds with spectral peaks at δ = 1.91 ppm, 3.64 ppm, 3.95 ppm & 4.05 ppm. The metabolite recoveries for acetonitrile were between 1.5 and 7 times higher than the methanol method, across all classes of metabolite. The methanol method was more effective in removing protein as reported by the free GAG undefined peak (44 % vs 125 %). However, qualitative evaluation showed that acetonitrile and methanol provided good restoration of the spectra to baseline. The methanol extraction has issues of a gelatinous substrate in the samples. All metabolite recoveries had a CV of > 15 %. A recommendation of acetonitrile liquid/liquid extraction was made for human synovial fluid (HSF) analysis. This is due to consistency, effective protein precipitation, recovery of metabolites and additional compounds not previously visible.


Asunto(s)
Metanol , Líquido Sinovial , Humanos , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Metanol/química , Espectroscopía de Resonancia Magnética/métodos , Extracción Líquido-Líquido , Acetonitrilos/metabolismo
3.
Anal Chem ; 95(6): 3147-3152, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36720172

RESUMEN

The diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY) experiment allows the calculation of diffusion coefficient values of metabolites in complex mixtures. However, this experiment has not yet been broadly used for metabolic profiling due to lack of a standardized protocol. Here we propose a pipeline for the DOSY experimental setup and data processing in metabolic phenotyping studies. Due to the complexity of biological samples, three experiments (a standard DOSY, a relaxation-edited DOSY, and a diffusion-edited DOSY) have been optimized to provide DOSY metabolic profiles with peak-picked diffusion coefficients for over 90% of signals visible in the one-dimensional 1H general biofluid profile in as little as 3 min 36 s. The developed parameter sets and tools are straightforward to implement and can facilitate the use of DOSY for metabolic profiling of human blood plasma and urine samples.


Asunto(s)
Espectroscopía de Resonancia Magnética , Humanos , Espectroscopía de Resonancia Magnética/métodos , Difusión
4.
Anal Chem ; 94(10): 4426-4436, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230805

RESUMEN

SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS).


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Adulto , Biomarcadores , COVID-19/complicaciones , COVID-19/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Humanos , Lipoproteínas , Fosfolípidos , Factores de Riesgo , SARS-CoV-2 , Espectrometría de Masas en Tándem/métodos , Síndrome Post Agudo de COVID-19
5.
Anal Chem ; 94(2): 1333-1341, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34985268

RESUMEN

Proton nuclear magnetic resonance (NMR) N-acetyl signals (Glyc) from glycoproteins and supramolecular phospholipids composite peak (SPC) from phospholipid quaternary nitrogen methyls in subcompartments of lipoprotein particles) can give important systemic metabolic information, but their absolute quantification is compromised by overlap with interfering resonances from lipoprotein lipids themselves. We present a J-Edited DIffusional (JEDI) proton NMR spectroscopic approach to selectively augment signals from the inflammatory marker peaks Glyc and SPCs in blood serum NMR spectra, which enables direct integration of peaks associated with molecules found in specific compartments. We explore a range of pulse sequences that allow editing based on peak J-modulation, translational diffusion, and T2 relaxation time and validate them for untreated blood serum samples from SARS-CoV-2 infected patients (n = 116) as well as samples from healthy controls and pregnant women with physiological inflammation and hyperlipidemia (n = 631). The data show that JEDI is an improved approach to selectively investigate inflammatory signals in serum and may have widespread diagnostic applicability to disease states associated with systemic inflammation.


Asunto(s)
COVID-19 , Protones , Biomarcadores , Femenino , Glicoproteínas , Humanos , Inflamación , Espectroscopía de Resonancia Magnética , Fosfolípidos , Embarazo , SARS-CoV-2 , Suero
6.
J Proteome Res ; 20(6): 3315-3329, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34009992

RESUMEN

We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Humanos , Lipoproteínas , Espectroscopía de Resonancia Magnética , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
7.
Anal Chem ; 93(8): 3976-3986, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33577736

RESUMEN

We have applied nuclear magnetic resonance spectroscopy based plasma phenotyping to reveal diagnostic molecular signatures of SARS-CoV-2 infection via combined diffusional and relaxation editing (DIRE). We compared plasma from healthy age-matched controls (n = 26) with SARS-CoV-2 negative non-hospitalized respiratory patients and hospitalized respiratory patients (n = 23 and 11 respectively) with SARS-CoV-2 rRT-PCR positive respiratory patients (n = 17, with longitudinal sampling time-points). DIRE data were modelled using principal component analysis and orthogonal projections to latent structures discriminant analysis (O-PLS-DA), with statistical cross-validation indices indicating excellent model generalization for the classification of SARS-CoV-2 positivity for all comparator groups (area under the receiver operator characteristic curve = 1). DIRE spectra show biomarker signal combinations conferred by differential concentrations of metabolites with selected molecular mobility properties. These comprise the following: (a) composite N-acetyl signals from α-1-acid glycoprotein and other glycoproteins (designated GlycA and GlycB) that were elevated in SARS-CoV-2 positive patients [p = 2.52 × 10-10 (GlycA) and 1.25 × 10-9 (GlycB) vs controls], (b) two diagnostic supramolecular phospholipid composite signals that were identified (SPC-A and SPC-B) from the -+N-(CH3)3 choline headgroups of lysophosphatidylcholines carried on plasma glycoproteins and from phospholipids in high-density lipoprotein subfractions (SPC-A) together with a phospholipid component of low-density lipoprotein (SPC-B). The integrals of the summed SPC signals (SPCtotal) were reduced in SARS-CoV-2 positive patients relative to both controls (p = 1.40 × 10-7) and SARS-CoV-2 negative patients (p = 4.52 × 10-8) but were not significantly different between controls and SARS-CoV-2 negative patients. The identity of the SPC signal components was determined using one and two dimensional diffusional, relaxation, and statistical spectroscopic experiments. The SPCtotal/GlycA ratios were also significantly different for control versus SARS-CoV-2 positive patients (p = 1.23 × 10-10) and for SARS-CoV-2 negatives versus positives (p = 1.60 × 10-9). Thus, plasma SPCtotal and SPCtotal/GlycA are proposed as sensitive molecular markers for SARS-CoV-2 positivity that could effectively augment current COVID-19 diagnostics and may have value in functional assessment of the disease recovery process in patients with long-term symptoms.


Asunto(s)
COVID-19/diagnóstico , Orosomucoide/análisis , Fosfolípidos/sangre , Anciano , Biomarcadores/sangre , COVID-19/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Resonancia Magnética Nuclear Biomolecular/métodos , Orosomucoide/química , Fosfolípidos/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética/estadística & datos numéricos , Curva ROC , SARS-CoV-2
8.
J Pharm Biomed Anal ; 197: 113942, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33607503

RESUMEN

The impact of metabolism upon the altered pathology of joint disease is rapidly becoming recognized as an important area of study. Synovial joint fluid is an attractive and representative biofluid of joint disease. A systemic review revealed little evidence of the metabolic stability of synovial joint fluid collection, handling or storage, despite recent reports characterizing the metabolic phenotype in joint disease. We aim to report the changes in small molecule detection within human synovial fluid (HSF) using nuclear magnetic resonance (NMR) spectroscopy at varying storage temperatures, durations and conditions. HSF was harvested by arthrocentesis from patients with isolated monoarthropathy or undergoing joint replacement (n = 30). Short-term storage (0-12 h, 4°C & 18°C) and the effect of repeated freeze-thaw cycles (-80°C to 18°C) was assessed. Long-term storage was evaluated by early (-80°C, <21days) and late analysis (-80°C, 10-12 months). 1D NMR spectroscopy experiments, NOESYGPPR1D and CPMG identified metabolites and semi-quantification was performed. Samples demonstrated broad stability to freeze-thaw cycling and refrigeration of <4 h. Short-term room temperature or refrigerated storage showed significant variation in 2-ketoisovalerate, valine, dimethylamine, succinate, 2-hydroxybutyrate, and acetaminophen glucuronide. Lipid and macromolecule detection was variable. Long-term storage demonstrated significant changes in: acetate, acetoacetate, creatine, N,N-dimethylglycine, dimethylsulfone, 3-hydroxybutyrate and succinate. Changeable metabolites during short-term storage appeared to be energy-synthesis intermediates. Most metabolites were stable for the first four hours at room temperature or refrigeration, with notable exceptions. We therefore recommend that HSF samples should be kept refrigerated for no more than 4 hours prior to freezing at -80°C. Furthermore, storage of HSF samples for 10-12 months before analysis can affect the detection of selected metabolites.


Asunto(s)
Manejo de Especímenes , Líquido Sinovial , Congelación , Humanos , Espectroscopía de Resonancia Magnética , Metabolómica , Temperatura
9.
J Proteome Res ; 20(2): 1382-1396, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33426894

RESUMEN

To investigate the systemic metabolic effects of SARS-CoV-2 infection, we analyzed 1H NMR spectroscopic data on human blood plasma and co-modeled with multiple plasma cytokines and chemokines (measured in parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRT-PCR-positive patients (n = 15, with multiple sampling timepoints) and age-matched healthy controls (n = 34, confirmed rRT-PCR negative), together with patients with COVID-19/influenza-like clinical symptoms who tested SARS-CoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with in vitro diagnostic research (IVDr) information on quantitative lipoprotein profiles (112 parameters) extracted from the raw 1D NMR data. All NMR methods gave highly significant discrimination of SARS-CoV-2 positive patients from controls and SARS-CoV-2 negative patients with individual NMR methods, giving different diagnostic information windows on disease-induced phenoconversion. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1ß, SDF-1α, IL-22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with multiple lipoproteins. IL-18, IL-6, and IFN-γ together with IP-10 and RANTES exhibited strong positive correlations with LDL1-4 subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic recovery.


Asunto(s)
COVID-19/diagnóstico , Quimiocinas/metabolismo , Citocinas/metabolismo , Lipoproteínas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , SARS-CoV-2/metabolismo , Adulto , Anciano , COVID-19/sangre , COVID-19/virología , Quimiocinas/sangre , Citocinas/sangre , Femenino , Interacciones Huésped-Patógeno , Humanos , Lipoproteínas/sangre , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Proteómica/métodos , SARS-CoV-2/fisiología
10.
J Proteome Res ; 20(2): 1415-1423, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33491459

RESUMEN

The utility of low sample volume in vitro diagnostic (IVDr) proton nuclear magnetic resonance (1H NMR) spectroscopic experiments on blood plasma for information recovery from limited availability or high value samples was exemplified using plasma from patients with SARS-CoV-2 infection and normal controls. 1H NMR spectra were obtained using solvent-suppressed 1D, spin-echo (CPMG), and 2-dimensional J-resolved (JRES) spectroscopy using both 3 mm outer diameter SampleJet NMR tubes (100 µL plasma) and 5 mm SampleJet NMR tubes (300 µL plasma) under in vitro diagnostic conditions. We noted near identical diagnostic models in both standard and low volume IVDr lipoprotein analysis (measuring 112 lipoprotein parameters) with a comparison of the two tubes yielding R2 values ranging between 0.82 and 0.99 for the 40 paired lipoprotein parameters samples. Lipoprotein measurements for the 3 mm tubes were achieved without time penalty over the 5 mm tubes as defined by biomarker recovery for SARS-CoV-2. Overall, biomarker pattern recovery for the lipoproteins was extremely similar, but there were some small positive offsets in the linear equations for several variables due to small shimming artifacts, but there was minimal degradation of the biological information. For the standard untargeted 1D, CPMG, and JRES NMR experiments on the same samples, the reduced signal-to-noise was more constraining and required greater scanning times to achieve similar differential diagnostic performance (15 min per sample per experiment for 3 mm 1D and CPMG, compared to 4 min for the 5 mm tubes). We conclude that the 3 mm IVDr method is fit-for-purpose for quantitative lipoprotein measurements, allowing the preparation of smaller volumes for high value or limited volume samples that is common in clinical studies. If there are no analytical time constraints, the lower volume experiments are equally informative for untargeted profiling.


Asunto(s)
COVID-19/diagnóstico , Lipoproteínas/metabolismo , Metabolómica/métodos , Proteómica/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , SARS-CoV-2/metabolismo , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/metabolismo , COVID-19/sangre , COVID-19/virología , Femenino , Humanos , Lipoproteínas/sangre , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , SARS-CoV-2/fisiología
11.
Bone Joint Res ; 10(1): 85-95, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33502243

RESUMEN

AIMS: The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. METHODS: In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. RESULTS: A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). CONCLUSION: Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative biomarkers that form the basis of new diagnostic tests for infected SF. Cite this article: Bone Joint Res 2021;10(1):85-95.

12.
J Proteome Res ; 19(11): 4428-4441, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32852212

RESUMEN

Quantitative nuclear magnetic resonance (NMR) spectroscopy of blood plasma is widely used to investigate perturbed metabolic processes in human diseases. The reliability of biochemical data derived from these measurements is dependent on the quality of the sample collection and exact preparation and analysis protocols. Here, we describe systematically, the impact of variations in sample collection and preparation on information recovery from quantitative proton (1H) NMR spectroscopy of human blood plasma and serum. The effects of variation of blood collection tube sizes and preservatives, successive freeze-thaw cycles, sample storage at -80 °C, and short-term storage at 4 and 20 °C on the quantitative lipoprotein and metabolite patterns were investigated. Storage of plasma samples at 4 °C for up to 48 h, freezing at -80 °C and blood sample collection tube choice have few and minor effects on quantitative lipoprotein profiles, and even storage at 4 °C for up to 168 h caused little information loss. In contrast, the impact of heat-treatment (56 °C for 30 min), which has been used for inactivation of SARS-CoV-2 and other viruses, that may be required prior to analytical measurements in low level biosecurity facilities induced marked changes in both lipoprotein and low molecular weight metabolite profiles. It was conclusively demonstrated that this heat inactivation procedure degrades lipoproteins and changes metabolic information in complex ways. Plasma from control individuals and SARS-CoV-2 infected patients are differentially altered resulting in the creation of artifactual pseudo-biomarkers and destruction of real biomarkers to the extent that data from heat-treated samples are largely uninterpretable. We also present several simple blood sample handling recommendations for optimal NMR-based biomarker discovery investigations in SARS CoV-2 studies and general clinical biomarker research.


Asunto(s)
Análisis Químico de la Sangre/normas , Recolección de Muestras de Sangre/instrumentación , Infecciones por Coronavirus , Lipoproteínas/sangre , Espectroscopía de Resonancia Magnética/métodos , Pandemias , Neumonía Viral , Artefactos , COVID-19 , Calor , Humanos , Reproducibilidad de los Resultados
13.
Anal Chem ; 92(17): 11516-11519, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815363

RESUMEN

High-resolution magic-angle-spinning 1H NMR spectroscopy (HR-MAS NMR) is a well-established technique for assessing the biochemical composition of intact tissue samples. In this study, we utilized a method based on HR-MAS NMR spectroscopy with slice localization (SLS) to achieve spatial resolution of metabolites. The obtained 7 slice spectra from each of the model samples (i.e., chicken thigh muscle with skin and murine renal biopsy including medulla (M) and cortex (C)) showed distinct metabolite compositions. Furthermore, we analyzed previously acquired 1H HR-MAS NMR spectra of separated cortex and medulla samples using multivariate statistical methods. Concentrations of glycerophosphocholine (GPC) were found to be significantly higher in the renal medulla compared to the cortex. Using GPC as a biomarker, we identified the tissue slices that were predominantly the cortex or medulla. This study demonstrates that HR-MAS SLS combined with multivariate statistics has the potential for identifying tissue heterogeneity and detailed biochemical characterization of complex tissue samples.


Asunto(s)
Biomarcadores/análisis , Glicerilfosforilcolina/análisis , Espectroscopía de Resonancia Magnética/métodos , Animales , Biopsia , Técnicas Biosensibles , Pollos , Corteza Renal/química , Metabolómica , Ratones Endogámicos C57BL , Análisis Multivariante , Músculos/química , Piel/química , Muslo
14.
Nat Protoc ; 15(8): 2538-2567, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32681152

RESUMEN

Metabolic profiling of biological samples provides important insights into multiple physiological and pathological processes but is hindered by a lack of automated annotation and standardized methods for structure elucidation of candidate disease biomarkers. Here we describe a system for identifying molecular species derived from nuclear magnetic resonance (NMR) spectroscopy-based metabolic phenotyping studies, with detailed information on sample preparation, data acquisition and data modeling. We provide eight different modular workflows to be followed in a recommended sequential order according to their level of difficulty. This multi-platform system involves the use of statistical spectroscopic tools such as Statistical Total Correlation Spectroscopy (STOCSY), Subset Optimization by Reference Matching (STORM) and Resolution-Enhanced (RED)-STORM to identify other signals in the NMR spectra relating to the same molecule. It also uses two-dimensional NMR spectroscopic analysis, separation and pre-concentration techniques, multiple hyphenated analytical platforms and data extraction from existing databases. The complete system, using all eight workflows, would take up to a month, as it includes multi-dimensional NMR experiments that require prolonged experiment times. However, easier identification cases using fewer steps would take 2 or 3 days. This approach to biomarker discovery is efficient and cost-effective and offers increased chemical space coverage of the metabolome, resulting in faster and more accurate assignment of NMR-generated biomarkers arising from metabolic phenotyping studies. It requires a basic understanding of MATLAB to use the statistical spectroscopic tools and analytical skills to perform solid phase extraction (SPE), liquid chromatography (LC) fraction collection, LC-NMR-mass spectroscopy and one-dimensional and two-dimensional NMR experiments.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Extracción en Fase Sólida , Flujo de Trabajo
15.
Bone Joint Res ; 9(3): 108-119, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32435463

RESUMEN

AIMS: Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes. METHODS: A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF. RESULTS: The primary analysis, which pooled the results from 17 published studies and four meeting abstracts, identified over 200 metabolites. Seven of these studies (six published studies, one meeting abstract) had asymptomatic control groups and collectively suggested 26 putative biomarkers in osteoarthritis, inflammatory arthropathies, and trauma. These can broadly be categorized into amino acids plus related metabolites, fatty acids, ketones, and sugars. CONCLUSION: The role of metabolic profiling in orthopaedics is fast evolving with many metabolites already identified in a variety of pathologies. However, these results need to be interpreted with caution due to the presence of multiple confounding factors in many of the studies. Future research should include largescale epidemiological metabolic profiling studies incorporating various confounding factors with appropriate statistical analysis to account for multiple testing of the data.Cite this article: Bone Joint Res. 2020;9(3):108-119.

16.
Org Biomol Chem ; 18(7): 1389-1401, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32002533

RESUMEN

Acyl glucuronide metabolites have been implicated in the toxicity of several carboxylic acid-containing drugs, and the rate of their degradation via intramolecular transacylation and hydrolysis has been associated with the degree of protein adduct formation. Although not yet proven, the formation of protein adducts in vivo - and subsequent downstream effects - has been proposed as a mechanism of toxicity for carboxylic acid-containing xenobiotics capable of forming acyl glucuronides. A structurally-related series of metabolites, the acyl glucosides, have also been shown to undergo similar degradation reactions and consequently the potential to display a similar mode of toxicity. Here we report detailed kinetic models of each transacylation and hydrolysis reaction for a series of phenylacetic acid acyl glucuronides and their analogous acyl glucosides. Differences in reactivity were observed for the individual transacylation steps between the compound series; our findings suggest that the charged carboxylate ion and neutral hydroxyl group in the glucuronide and glucoside conjugates, respectively, are responsible for these differences. The transacylation reaction was modelled using density functional theory and the calculated activation energy for this reaction showed a close correlation with the degradation rate of the 1-ß anomer. Comparison of optimised geometries between the two series of conjugates revealed differences in hydrogen bonding which may further explain the differences in reactivity observed. Together, these models may find application in drug discovery for prediction of acyl glucuronide and glucoside metabolite behaviour.


Asunto(s)
Glucósidos/química , Glucurónidos/química , Modelos Químicos , Teoría Funcional de la Densidad , Cinética
17.
Trends Pharmacol Sci ; 40(10): 763-773, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31511194

RESUMEN

Understanding metabotype (multicomponent metabolic characteristics) variation can help to generate new diagnostic and prognostic biomarkers, as well as models, with potential to impact on patient management. We present a suite of conceptual approaches for the generation, analysis, and understanding of metabotypes from body fluids and tissues. We describe and exemplify four fundamental approaches to the generation and utilization of metabotype data via multiparametric measurement of (i) metabolite levels, (ii) metabolic trajectories, (iii) metabolic entropies, and (iv) metabolic networks and correlations in space and time. This conceptual framework can underpin metabotyping in the scenario of personalized medicine, with the aim of improving clinical outcomes for patients, but the framework will have value and utility in areas of metabolic profiling well beyond this exemplar.


Asunto(s)
Técnicas y Procedimientos Diagnósticos , Metabolómica/métodos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Humanos , Fenotipo , Medicina de Precisión/métodos , Pronóstico
18.
Faraday Discuss ; 218(0): 395-416, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31116193

RESUMEN

Metabolite identification and annotation procedures are necessary for the discovery of biomarkers indicative of phenotypes or disease states, but these processes can be bottlenecked by the sheer complexity of biofluids containing thousands of different compounds. Here we describe low-cost novel SPE-NMR protocols utilising different cartridges and conditions, on both natural and artificial urine mixtures, which produce unique retention profiles useful for metabolic profiling. We find that different SPE methods applied to biofluids such as urine can be used to selectively retain metabolites based on compound taxonomy or other key functional groups, reducing peak overlap through concentration and fractionation of unknowns and hence promising greater control over the metabolite annotation/identification process.


Asunto(s)
Biomarcadores/metabolismo , Biomarcadores/orina , Resonancia Magnética Nuclear Biomolecular , Extracción en Fase Sólida , Orina/química , Voluntarios Sanos , Humanos , Polietilenglicoles/análisis
19.
Eur Heart J ; 40(34): 2883-2896, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31102408

RESUMEN

AIMS: To characterize serum metabolic signatures associated with atherosclerosis in the coronary or carotid arteries and subsequently their association with incident cardiovascular disease (CVD). METHODS AND RESULTS: We used untargeted one-dimensional (1D) serum metabolic profiling by proton nuclear magnetic resonance spectroscopy (1H NMR) among 3867 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), with replication among 3569 participants from the Rotterdam and LOLIPOP studies. Atherosclerosis was assessed by coronary artery calcium (CAC) and carotid intima-media thickness (IMT). We used multivariable linear regression to evaluate associations between NMR features and atherosclerosis accounting for multiplicity of comparisons. We then examined associations between metabolites associated with atherosclerosis and incident CVD available in MESA and Rotterdam and explored molecular networks through bioinformatics analyses. Overall, 30 1H NMR measured metabolites were associated with CAC and/or IMT, P = 1.3 × 10-14 to 1.0 × 10-6 (discovery) and P = 5.6 × 10-10 to 1.1 × 10-2 (replication). These associations were substantially attenuated after adjustment for conventional cardiovascular risk factors. Metabolites associated with atherosclerosis revealed disturbances in lipid and carbohydrate metabolism, branched chain, and aromatic amino acid metabolism, as well as oxidative stress and inflammatory pathways. Analyses of incident CVD events showed inverse associations with creatine, creatinine, and phenylalanine, and direct associations with mannose, acetaminophen-glucuronide, and lactate as well as apolipoprotein B (P < 0.05). CONCLUSION: Metabolites associated with atherosclerosis were largely consistent between the two vascular beds (coronary and carotid arteries) and predominantly tag pathways that overlap with the known cardiovascular risk factors. We present an integrated systems network that highlights a series of inter-connected pathways underlying atherosclerosis.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Enfermedades de las Arterias Carótidas/complicaciones , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Adulto , Anciano , Enfermedades Cardiovasculares/sangre , Enfermedades de las Arterias Carótidas/sangre , Enfermedad de la Arteria Coronaria/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Espectroscopía de Protones por Resonancia Magnética
20.
Mol Omics ; 15(1): 39-49, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30672550

RESUMEN

Nephrotic syndrome with idiopathic membranous nephropathy as a major contributor, is characterized by proteinuria, hypoalbuminemia and oedema. Diagnosis is based on renal biopsy and the condition is treated using immunosuppressive drugs; however nephrotic syndrome treatment efficacy varies among patients. Multi-omic urine analyses can discover new markers of nephrotic syndrome that can be used to develop personalized treatments. For proteomics, a protease inhibitor (PI) is sometimes added at sample collection to conserve proteins but its impact on urine metabolic phenotyping needs to be evaluated. Urine from controls (n = 4) and idiopathic membranous nephropathy (iMN) patients (n = 6) were collected with and without PI addition and analysed using 1H NMR spectroscopy and UPLC-MS. PI-related data features were observed in the 1H NMR spectra but their removal followed by a median fold change normalisation, eliminated the PI contribution. PI-related metabolites in UPLC-MS data had limited effect on metabolic patterns specific to iMN. When using an appropriate data processing pipeline, PI-containing urine samples are appropriate for 1H NMR and MS metabolic profiling of patients with nephrotic syndrome.


Asunto(s)
Enfermedades Renales/metabolismo , Enfermedades Renales/orina , Espectroscopía de Resonancia Magnética , Metabolómica , Inhibidores de Proteasas/farmacología , Adulto , Anciano , Biomarcadores/metabolismo , Toma de Decisiones , Análisis Discriminante , Femenino , Glomerulonefritis Membranosa/metabolismo , Glomerulonefritis Membranosa/orina , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Fenotipo , Análisis de Componente Principal , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...