Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637499

RESUMEN

In this issue of JEM, Zhang et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202669) identify a dependency of glioma stem cells on tyrosine phosphatase activity of EYA2 and a new role for this phosphatase at the centrosome, offering a new therapeutic approach to target mitotic activity.


Asunto(s)
Glioma , Monoéster Fosfórico Hidrolasas , Glioma/genética , Humanos , Células Madre Neoplásicas
2.
Nat Commun ; 7: 11628, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27188978

RESUMEN

The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0-4 (P0-P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2(+)Olig2(+), but by P8 a Sox2(-) subpopulation emerges, suggesting a lineage progression from Sox2(+) 'early' to Sox2(-) 'late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2-P3 Sox2(+) progenitors. These results demonstrate the importance of postnatal Sox2(+)Olig2(+) progenitors in pontine growth and oligodendrogenesis.


Asunto(s)
Células Precursoras de Oligodendrocitos/fisiología , Puente/crecimiento & desarrollo , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Proliferación Celular , Cuarto Ventrículo/citología , Ratones , Neurogénesis , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/fisiología , Puente/citología , Factores de Transcripción SOXB1/metabolismo
3.
Stem Cell Reports ; 5(4): 461-70, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26411905

RESUMEN

Neural stem cells in different locations of the postnatal mouse ventricular-subventricular zone (V-SVZ) generate different subtypes of olfactory bulb (OB) interneurons. High Sonic hedgehog (SHH) signaling in the ventral V-SVZ regulates the production of specific subtypes of neurons destined for the OB. Here we found a transient territory of high SHH signaling in the dorsal V-SVZ beneath the corpus callosum (CC). Using intersectional lineage tracing in neonates to label dorsal radial glial cells (RGCs) expressing the SHH target gene Gli1, we demonstrate that this region produces many CC cells in the oligodendroglial lineage and specific subtypes of neurons in the OB. The number of oligodendroglial cells generated correlated with the levels of SHH signaling. This work identifies a dorsal domain of SHH signaling, which is an important source of oligodendroglial cells for the postnatal mammalian forebrain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Células-Madre Neurales/citología , Bulbo Olfatorio/citología , Oligodendroglía/citología , Transducción de Señal , Animales , Encéfalo/citología , Encéfalo/metabolismo , Linaje de la Célula , Cuerpo Calloso/citología , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Oligodendroglía/metabolismo , Proteína con Dedos de Zinc GLI1
4.
J Comp Neurol ; 523(3): 449-62, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25307966

RESUMEN

Despite its critical importance to global brain function, the postnatal development of the human pons remains poorly understood. In the present study, we first performed magnetic resonance imaging (MRI)-based morphometric analyses of the postnatal human pons (0-18 years; n = 6-14/timepoint). Pons volume increased 6-fold from birth to 5 years, followed by continued slower growth throughout childhood. The observed growth was primarily due to expansion of the basis pontis. T2-based MRI analysis suggests that this growth is linked to increased myelination, and histological analysis of myelin basic protein in human postmortem specimens confirmed a dramatic increase in myelination during infancy. Analysis of cellular proliferation revealed many Ki67(+) cells during the first 7 months of life, particularly during the first month, where proliferation was increased in the basis relative to tegmentum. The majority of proliferative cells in the postnatal pons expressed the transcription factor Olig2, suggesting an oligodendrocyte lineage. The proportion of proliferating cells that were Olig2(+) was similar through the first 7 months of life and between basis and tegmentum. The number of Ki67(+) cells declined dramatically from birth to 7 months and further decreased by 3 years, with a small number of Ki67(+) cells observed throughout childhood. In addition, two populations of vimentin/nestin-expressing cells were identified: a dorsal group near the ventricular surface, which persists throughout childhood, and a parenchymal population that diminishes by 7 months and was not evident later in childhood. Together, our data reveal remarkable postnatal growth in the ventral pons, particularly during infancy when cells are most proliferative and myelination increases.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Puente , Adolescente , Análisis de Varianza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/fisiología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Antígeno Ki-67/metabolismo , Imagen por Resonancia Magnética , Masculino , Vaina de Mielina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Puente/anatomía & histología , Puente/crecimiento & desarrollo , Puente/metabolismo
5.
Genome Res ; 21(3): 433-46, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21239477

RESUMEN

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.


Asunto(s)
Proteínas Recombinantes/metabolismo , Proteína S6 Ribosómica/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente , Redes Reguladoras de Genes , Genoma , Genómica , Humanos , Análisis por Micromatrices , Terapia Molecular Dirigida , Fosforilación , Interferencia de ARN , Proteínas Recombinantes/genética , Proteína S6 Ribosómica/genética , Transducción de Señal/genética , Factores de Transcripción/genética
6.
BMC Bioinformatics ; 9: 482, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19014601

RESUMEN

BACKGROUND: Image-based screens can produce hundreds of measured features for each of hundreds of millions of individual cells in a single experiment. RESULTS: Here, we describe CellProfiler Analyst, open-source software for the interactive exploration and analysis of multidimensional data, particularly data from high-throughput, image-based experiments. CONCLUSION: The system enables interactive data exploration for image-based screens and automated scoring of complex phenotypes that require combinations of multiple measured features per cell.


Asunto(s)
Células/ultraestructura , Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fenotipo , Programas Informáticos , Inteligencia Artificial
7.
Science ; 320(5882): 1496-501, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18497260

RESUMEN

The multiprotein mTORC1 protein kinase complex is the central component of a pathway that promotes growth in response to insulin, energy levels, and amino acids and is deregulated in common cancers. We find that the Rag proteins--a family of four related small guanosine triphosphatases (GTPases)--interact with mTORC1 in an amino acid-sensitive manner and are necessary for the activation of the mTORC1 pathway by amino acids. A Rag mutant that is constitutively bound to guanosine triphosphate interacted strongly with mTORC1, and its expression within cells made the mTORC1 pathway resistant to amino acid deprivation. Conversely, expression of a guanosine diphosphate-bound Rag mutant prevented stimulation of mTORC1 by amino acids. The Rag proteins do not directly stimulate the kinase activity of mTORC1, but, like amino acids, promote the intracellular localization of mTOR to a compartment that also contains its activator Rheb.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dimerización , Guanosina Trifosfato/metabolismo , Humanos , Insulina/metabolismo , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos , Proteínas Mutantes/metabolismo , Mutación , Neuropéptidos/metabolismo , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR
8.
Genetics ; 178(1): 157-69, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18202365

RESUMEN

To analyze mechanisms that modulate serotonin signaling, we investigated how Caenorhabditis elegans regulates the function of serotonergic motor neurons that stimulate egg-laying behavior. Egg laying is inhibited by the G protein Galphao and activated by the G protein Galphaq. We found that Galphao and Galphaq act directly in the serotonergic HSN motor neurons to control egg laying. There, the G proteins had opposing effects on transcription of the tryptophan hydroxylase gene tph-1, which encodes the rate-limiting enzyme for serotonin biosynthesis. Antiserotonin staining confirmed that Galphao and Galphaq antagonistically affect serotonin levels. Altering tph-1 gene dosage showed that small changes in tph-1 expression were sufficient to affect egg-laying behavior. Epistasis experiments showed that signaling through the G proteins has additional tph-1-independent effects. Our results indicate that (1) serotonin signaling is regulated by modulating serotonin biosynthesis and (2) Galphao and Galphaq act in the same neurons to have opposing effects on behavior, in part, by antagonistically regulating transcription of specific genes. Galphao and Galphaq have opposing effects on many behaviors in addition to egg laying and may generally act, as they do in the egg-laying system, to integrate multiple signals and consequently set levels of transcription of genes that affect neurotransmitter release.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Serotonina/biosíntesis , Transducción de Señal , Animales , Biomarcadores/metabolismo , Caenorhabditis elegans/citología , Regulación Enzimológica de la Expresión Génica , Neuronas Motoras/citología , Neuronas Motoras/enzimología , Neuronas Motoras/metabolismo , Músculos/citología , Músculos/enzimología , Músculos/metabolismo , Especificidad de Órganos , Oviposición , Regiones Promotoras Genéticas/genética , Sinapsis/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
9.
Mol Cell ; 25(6): 903-15, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17386266

RESUMEN

The heterotrimeric mTORC1 protein kinase nucleates a signaling network that promotes cell growth in response to insulin and becomes constitutively active in cells missing the TSC1 or TSC2 tumor suppressors. Insulin stimulates the phosphorylation of S6K1, an mTORC1 substrate, but it is not known how mTORC1 kinase activity is regulated. We identify PRAS40 as a raptor-interacting protein that binds to mTORC1 in insulin-deprived cells and whose in vitro interaction with mTORC1 is disrupted by high salt concentrations. PRAS40 inhibits cell growth, S6K1 phosphorylation, and rheb-induced activation of the mTORC1 pathway, and in vitro it prevents the great increase in mTORC1 kinase activity induced by rheb1-GTP. Insulin stimulates Akt/PKB-mediated phosphorylation of PRAS40, which prevents its inhibition of mTORC1 in cells and in vitro. We propose that the relative strengths of the rheb- and PRAS40-mediated inputs to mTORC1 set overall pathway activity and that insulin activates mTORC1 through the coordinated regulation of both.


Asunto(s)
Insulina/fisiología , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras , Línea Celular , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Fosforilación , Proteínas , Serina-Treonina Quinasas TOR
10.
Genome Biol ; 7(10): R100, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17076895

RESUMEN

Biologists can now prepare and image thousands of samples per day using automation, enabling chemical screens and functional genomics (for example, using RNA interference). Here we describe the first free, open-source system designed for flexible, high-throughput cell image analysis, CellProfiler. CellProfiler can address a variety of biological questions quantitatively, including standard assays (for example, cell count, size, per-cell protein levels) and complex morphological assays (for example, cell/organelle shape or subcellular patterns of DNA or protein staining).


Asunto(s)
Perfilación de la Expresión Génica , Mutación , Relación Dosis-Respuesta a Droga , Procesamiento de Imagen Asistido por Computador , Modelos Genéticos , Fenotipo , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA