Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Dermatol ; 188(5): 636-648, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691791

RESUMEN

BACKGROUND: Neutrophils have been shown to contribute to the pathophysiology of hidradenitis suppurativa (HS), a chronic, painful and debilitating inflammatory skin disease, yet their exact role remains to be fully defined. Granulocyte colony-stimulating factor (G-CSF), a major regulator of neutrophil development and survival, can be blocked by the novel, fully human anti-G-CSF receptor (G-CSFR) monoclonal antibody CSL324. OBJECTIVES: We investigated the activation and migration of neutrophils in HS and the impact of blocking G-CSFR with CSL324. METHODS: Biopsy and peripheral blood samples were taken from participants of two studies: 2018.206, a noninterventional research study of systemic and dermal neutrophils and inflammatory markers in patients with neutrophilic skin diseases, and CSL324_1001 (ACTRN12616000846426), a single-dose ascending and repeated dose, randomized, double-blind, placebo-controlled study to assess the safety, pharmacokinetics and pharmacodynamics of CSL324 in healthy adult subjects. Ex vivo experiments were performed, including neutrophil enumeration and immunophenotyping, migration, receptor occupancy and transcriptome analysis. RESULTS: The number of cells positive for the neutrophil markers myeloperoxidase (MPO) and neutrophil elastase (NE) was significantly higher in HS lesions compared with biopsies from healthy donors (HDs) (P < 0.0001 and P = 0.0223, respectively). In peripheral blood samples, mean neutrophil counts were significantly higher in patients with HS than in HDs (2.98 vs. 1.60 × 109 L-1, respectively; P = 8.8 × 10-4). Neutrophil migration pathways in peripheral blood were increased in patients with HS and their neutrophils demonstrated an increased migration phenotype, with higher mean CXCR1 on the surface of neutrophils in patients with HS (24453.20 vs. 20798.47 for HD; P = 0.03). G-CSF was a key driver of the transcriptomic changes in the peripheral blood of patients with HS and was elevated in serum from patients with HS compared with HDs (mean 6.61 vs. 3.84 pg mL-1, respectively; P = 0.013). Administration of CSL324 inhibited G-CSF-induced transcriptional changes in HDs, similar to those observed in the HS cohort, as highlighted by expression changes in genes related to neutrophil migratory capacity. CONCLUSIONS: Data suggest that neutrophils contribute to HS pathophysiology and that neutrophils are increased in lesions due to an increase in G-CSF-driven migration. CSL324 counteracted G-CSF-induced transcriptomic changes and blocked neutrophil migration by reducing cell-surface levels of chemokine receptors.


Asunto(s)
Hidradenitis Supurativa , Receptores de Factor Estimulante de Colonias de Granulocito , Adulto , Humanos , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Neutrófilos , Hidradenitis Supurativa/tratamiento farmacológico , Hidradenitis Supurativa/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología
2.
J Gastrointest Surg ; 26(12): 2551-2558, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253502

RESUMEN

BACKGROUND: The organization of healthcare could have an impact on the outcome of patients treated for acute cholecystitis (AC). The aim of this study was to analyze the way in which patients with AC are managed relative to the level of care by the treating hospital. METHODS: Data were collected from the Swedish Register for Gallstone Surgery and ERCP (GallRiks). Cholecystectomies between 2010 and 2019 were included. The inclusion criterion was acute cholecystectomy in patients with AC operated at either tertiary referral centers (TRCs) or regional hospitals. RESULTS: A total of 24,194 cholecystectomies with AC met the inclusion criterion. The time between admission and acute surgery was significantly elongated at TRCs compared with regional hospitals (2.2 ± 1.7 days vs. 1.6 ± 1.4 days, mean ± SD; p < 0.0001). Patients with a history of AC were more frequent at TRC (10.1% vs. 8.9%, p < 0.0056) and had a higher adverse event rate compared with those at regional hospitals (OR 1.61; CI 1.40-1.84, p < 0.0001). Surprisingly, an increased number of hospital beds correlated slightly with an increased number of days between admission and surgery (R2 = 0.132; p = 0.0075). CONCLUSION: Compared with regional hospitals, patients with AC had to wait longer at TRCs before surgery. A history of AC significantly increased the risk of adverse events. These findings indicate that logistic and organizational aspects of hospital care may affect the management of patients with AC. However, whether these findings can be generalized to healthcare organizations outside Sweden requires further investigation.


Asunto(s)
Colecistectomía Laparoscópica , Colecistitis Aguda , Humanos , Colecistitis Aguda/cirugía , Colecistitis Aguda/etiología , Colecistectomía/efectos adversos , Centros de Atención Terciaria , Suecia , Colecistectomía Laparoscópica/efectos adversos
3.
Scand J Surg ; 110(3): 335-343, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33106126

RESUMEN

BACKGROUND: The lack of studies showing benefit from surgery in patients with symptoms of gallstone disease has led to a divergence in local practices and standards of care. This study aimed to explore regional differences in management and complications in Sweden. Furthermore, to study whether population density had an impact on management. METHODS: Data were collected from the Swedish National Register for Gallstone Surgery and Endoscopic Retrograde Cholangiopancreatography (GallRiks). Cholecystectomies undertaken for gallstone disease between January 2006 and December 2017 were included. Age, sex, American Society of Anesthesiologists (ASA) classification, intra- and post-operative complications, and the proportion of patients with acute cholecystitis who underwent surgery within 2 days of hospital admission were analyzed. The 21 different geographical regions in Sweden were compared, and each variable was analyzed according to population density. RESULTS: A total of 139,444 cholecystectomies cases were included in this study. There were large differences between regions regarding indications for surgery and intra- and post-operative complications. In the analyses, there were greater divergences than would be expected by chance for most of the variables analyzed. Age of the cholecystectomized patients correlated with population density of the regions (R2 = 0.310; p = 0.0088). CONCLUSIONS: There are major differences between the different regions in Sweden in terms of the treatment of gallstone disease and outcome, but these did not correlate to population density, suggesting that local routines are more likely to have an impact on treatment strategies rather than demographic factors. These differences need further investigation to reveal the underlying causes.


Asunto(s)
Colecistitis Aguda , Cálculos Biliares , Colangiopancreatografia Retrógrada Endoscópica , Colecistectomía , Colecistitis Aguda/cirugía , Cálculos Biliares/epidemiología , Cálculos Biliares/cirugía , Humanos , Sistema de Registros , Suecia/epidemiología , Resultado del Tratamiento
4.
J Cell Sci ; 132(5)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709919

RESUMEN

Necroptosis is an inflammatory form of programmed cell death mediated by the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Upon phosphorylation by receptor-interacting protein kinase-3 (RIPK3), MLKL oligomerizes, and translocates to and disrupts the plasma membrane, thereby causing necroptotic cell lysis. Herein, we show that activation of necroptosis in mouse dermal fibroblasts (MDFs) and HT-29 human colorectal cancer cells results in accumulation of the autophagic marker, lipidated LC3B (also known as MAP1LC3B), in an MLKL-dependent manner. Unexpectedly, the necroptosis-induced increase in lipidated LC3B was due to inhibition of autophagic flux, not the activation of autophagy. Inhibition of autophagy by MLKL correlated with a decrease in autophagosome and/or autolysosome function, and required the association of activated MLKL with intracellular membranes. Collectively, our findings uncover an additional role for the MLKL pseudokinase, namely to inhibit autophagy during necroptosis.


Asunto(s)
Autofagosomas/metabolismo , Neoplasias Colorrectales/metabolismo , Dermis/patología , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Quinasas/metabolismo , Animales , Autofagia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias Colorrectales/patología , Fibroblastos/patología , Técnicas de Inactivación de Genes , Células HT29 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis , Proteínas Quinasas/genética , Transporte de Proteínas
5.
Cell Death Differ ; 26(10): 2074-2085, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30770875

RESUMEN

Withdrawal of the growth factor interleukin-3 (IL-3) from IL-3-dependent myeloid cells causes them to undergo Bax/Bak1-dependent apoptosis, whereas factor-deprived Bax-/-Bak1-/- cells remain viable, but arrest and shrink. It was reported that withdrawal of IL-3 from Bax-/-Bak1-/- cells caused decreased expression of the glucose transporter Glut1, leading to reduced glucose uptake, so that arrested cells required Atg5-dependent autophagy for long-term survival. In other cell types, a decrease in Glut1 is mediated by the thioredoxin-interacting protein (Txnip), which is induced in IL-3-dependent myeloid cells when growth factor is removed. We mutated Atg5 and Txnip by CRISPR/Cas9 and found that Atg5-dependent autophagy was not necessary for the long-term viability of cycling or arrested Bax-/-Bak1-/- cells, and that Txnip was not required for the decrease in Glut1 expression in response to IL-3 withdrawal. Surprisingly, Atg5-deficient Bax/Bak1 double mutant cells survived for several weeks in medium supplemented with 10% fetal bovine serum (FBS), without high concentrations of added glucose or glutamine. When serum was withdrawn, the provision of an equivalent amount of glucose present in 10% FBS (~0.5 mM) was sufficient to support cell survival for more than a week, in the presence or absence of IL-3. Thus, Bax-/-Bak1-/- myeloid cells deprived of growth factor consume extracellular glucose to maintain long-term viability, without a requirement for Atg5-dependent autophagy.


Asunto(s)
Glucosa/metabolismo , Glucosa/farmacología , Interleucina-3/deficiencia , Células Mieloides/citología , Células Mieloides/metabolismo , Animales , Apoptosis/fisiología , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Supervivencia Celular/fisiología , Técnicas de Inactivación de Genes , Interleucina-3/metabolismo , Ratones , Proteína Destructora del Antagonista Homólogo bcl-2/deficiencia , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
6.
Cell Death Differ ; 26(9): 1766-1781, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30538285

RESUMEN

Drugs targeting various pro-survival BCL-2 family members (''BH3 mimetics'') have efficacy in hemopoietic malignancies, but the non-targeted pro-survival family members can promote resistance. Pertinently, the sensitivity of some tumor cell lines to BH3 mimetic ABT737, which targets BCL-2, BCL-XL, and BCL-W but not MCL-1, is enhanced by 2-deoxyglucose (2DG). We found that 2DG augmented apoptosis induced by ABT737 in 3 of 8 human hemopoietic tumor cell lines, most strongly in pre-B acute lymphocytic leukemia cell line NALM-6, the focus of our mechanistic studies. Although 2DG can lower MCL-1 translation, how it does so is incompletely understood, in part because 2DG inhibits both glycolysis and protein glycosylation in the endoplasmic reticulum (ER). Its glycolysis inhibition lowered ATP and, through the AMPK/mTORC1 pathway, markedly reduced global protein synthesis, as did an ER integrated stress response. A dual reporter assay revealed that 2DG impeded not only cap-dependent translation but also elongation or cap-independent translation. MCL-1 protein fell markedly, whereas 12 other BCL-2 family members were unaffected. We ascribe the MCL-1 drop to the global fall in translation, exacerbated for mRNAs with a structured 5' untranslated region (5'UTR) containing potential regulatory motifs like those in MCL-1 mRNA and the short half-life of MCL-1 protein. Pertinently, 2DG downregulated two other short-lived oncoproteins, MYC and MDM2. Thus, our results support MCL-1 as a critical 2DG target, but also reveal multiple effects on global translation that may well also affect its promotion of apoptosis.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Fragmentos de Péptidos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Biomimética , Compuestos de Bifenilo , Línea Celular Tumoral , Desoxiglucosa/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/genética
7.
Cell Rep ; 25(9): 2339-2353.e4, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485804

RESUMEN

Intrinsic apoptosis resulting from BAX/BAK-mediated mitochondrial membrane damage is regarded as immunologically silent. We show here that in macrophages, BAX/BAK activation results in inhibitor of apoptosis (IAP) protein degradation to promote caspase-8-mediated activation of IL-1ß. Furthermore, BAX/BAK signaling induces a parallel pathway to NLRP3 inflammasome-mediated caspase-1-dependent IL-1ß maturation that requires potassium efflux. Remarkably, following BAX/BAK activation, the apoptotic executioner caspases, caspase-3 and -7, act upstream of both caspase-8 and NLRP3-induced IL-1ß maturation and secretion. Conversely, the pyroptotic cell death effectors gasdermin D and gasdermin E are not essential for BAX/BAK-induced IL-1ß release. These findings highlight that innate immune cells undergoing BAX/BAK-mediated apoptosis have the capacity to generate pro-inflammatory signals and provide an explanation as to why IL-1ß activation is often associated with cellular stress, such as during chemotherapy.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 7 , Caspasa 8/metabolismo , Activación Enzimática , Macrófagos/metabolismo , Ratones , Agregado de Proteínas , Proteolisis , Transducción de Señal
8.
Nat Med ; 24(7): 947-953, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29892060

RESUMEN

It has long been assumed that p53 suppresses tumor development through induction of apoptosis, possibly with contributions by cell cycle arrest and cell senescence1,2. However, combined deficiency in these three processes does not result in spontaneous tumor formation as observed upon loss of p53, suggesting the existence of additional mechanisms that are critical mediators of p53-dependent tumor suppression function3-5. To define such mechanisms, we performed in vivo shRNA screens targeting p53-regulated genes in sensitized genetic backgrounds. We found that knockdown of Zmat3, Ctsf and Cav1, promoted lymphoma/leukemia development only when PUMA and p21, the critical effectors of p53-driven apoptosis, cell cycle arrest and senescence, were also absent. Notably, loss of the DNA repair gene Mlh1 caused lymphoma in a wild-type background, and its enforced expression was able to delay tumor development driven by loss of p53. Further examination of direct p53 target genes implicated in DNA repair showed that knockdown of Mlh1, Msh2, Rnf144b, Cav1 and Ddit4 accelerated MYC-driven lymphoma development to a similar extent as knockdown of p53. Collectively, these findings demonstrate that extensive functional overlap of several p53-regulated processes safeguards against cancer and that coordination of DNA repair appears to be an important process by which p53 suppresses tumor development.


Asunto(s)
Reparación del ADN , Proteína p53 Supresora de Tumor/metabolismo , Animales , Reparación del ADN/genética , Células Madre Hematopoyéticas/metabolismo , Estimación de Kaplan-Meier , Ratones Endogámicos C57BL , Homólogo 1 de la Proteína MutL/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
9.
J Biol Chem ; 293(23): 8874-8885, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695504

RESUMEN

Inhibition of the metabolic regulator AMP-activated protein kinase (AMPK) is increasingly being investigated for its therapeutic potential in diseases where AMPK hyperactivity results in poor prognoses, as in established cancers and neurodegeneration. However, AMPK-inhibitory tool compounds are largely limited to compound C, which has a poor selectivity profile. Here we identify the pyrimidine derivative SBI-0206965 as a direct AMPK inhibitor. SBI-0206965 inhibits AMPK with 40-fold greater potency and markedly lower kinase promiscuity than compound C and inhibits cellular AMPK signaling. Biochemical characterization reveals that SBI-0206965 is a mixed-type inhibitor. A co-crystal structure of the AMPK kinase domain/SBI-0206965 complex shows that the drug occupies a pocket that partially overlaps the ATP active site in a type IIb inhibitor manner. SBI-0206965 has utility as a tool compound for investigating physiological roles for AMPK and provides fresh impetus to small-molecule AMPK inhibitor therapeutic development.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Benzamidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Benzamidas/química , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química
10.
Cell Death Differ ; 25(4): 784-796, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29229994

RESUMEN

Cells undergoing Bax/Bak-mediated apoptosis exhibit signs of autophagy, but how it is activated and its significance is unknown. By directly activating Bax/Bak with BH3-only proteins or BH3 mimetic compounds, we demonstrate that mitochondrial damage correlated with a rapid increase in intracellular [AMP]/[ATP], phosphorylation of 5' AMP-activated protein kinase (AMPK), and activation of unc-51 like autophagy activating kinase 1 (ULK1). Consequently, autophagic flux was triggered early in the apoptotic pathway, as activation of the apoptosome and caspases were not necessary for its induction. Bax/Bak-triggered autophagy resulted in the clearance of damaged mitochondria in an ATG5/7-dependent manner that did not require Parkin. Importantly, Bax/Bak-mediated autophagy inhibited the secretion of the pro-inflammatory cytokine interferon-ß (IFN-ß) produced in response to mitochondrial damage, but not another cytokine interleukin-6 (IL-6). These findings show that Bax/Bak stimulated autophagy is essential for ensuring immunological silence during apoptosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Autofagia , Interferón Tipo I/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Interferón Tipo I/genética , Ratones , Ratones Noqueados , Mitocondrias/patología
11.
Curr Opin Genet Dev ; 48: 104-111, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29179096

RESUMEN

Translation is a pivotal step in the regulation of gene expression as well as one of the most energy consuming processes in the cell. Dysregulation of translation caused by the aberrant function of upstream signaling pathways and/or perturbations in the expression or function of components of the translation machinery is frequent in cancer. In this review, we discuss emerging findings that highlight hitherto unappreciated aspects of signaling to the translation apparatus with the particular focus on emerging connections between protein synthesis, autophagy and energy homeostasis in cancer.


Asunto(s)
Autofagia , Metabolismo Energético , Neoplasias/metabolismo , Biosíntesis de Proteínas , Transducción de Señal , Animales , Núcleo Celular/genética , Humanos , Proteínas Mitocondriales/genética
12.
Methods Mol Biol ; 1714: 229-236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177866

RESUMEN

Cell death results in the breakdown of the plasma membrane, which can cause the release of cytosolic proteins. During caspase-1-mediated cell death, termed pyroptosis, pro-inflammatory mediators that lack canonical secretory signal sequences, such as interleukin-1ß (IL-1ß), are released into the extracellular environment. To define whether cell death is required for the release of IL-1ß, or if IL-1ß can be actively secreted from viable cells, we have developed a modified IL-1ß Enzyme-Linked ImmunoSpot (ELISpot) assay. This assay simultaneously detects cellular viability and IL-1ß release at the single-cell level, and is therefore useful to examine how cell death influences IL-1ß secretion under different experimental conditions. Cells expressing a surrogate viability marker, such as GFP, are plated onto cellulose filter plates coated with an IL-1ß capture antibody. This antibody immobilizes IL-1ß as it is released from cells, allowing detection of distinct IL-1ß "spots." Both GFP positive cells and IL-1ß spots are detected and quantified using an AID ELISpot Reader, and the captured images are overlaid. Therefore, cell viability and IL-1ß release from individual cells can be monitored visually. We have recently used this method to document how individual fibroblasts expressing activated caspase-1 can secrete IL-1ß in the absence of cell death. Adaptation of this assay to other experimental conditions may help to define the circumstances where cell death influences IL-1ß release and IL-1ß-driven inflammatory responses.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Fibroblastos/citología , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Análisis de la Célula Individual/métodos , Animales , Supervivencia Celular , Células Cultivadas , Ratones
13.
Proc Natl Acad Sci U S A ; 114(6): E961-E969, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28096356

RESUMEN

Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1ß. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1ß secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1ß release, was not essential for MLKL-dependent death or IL-1ß secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1ß cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases.


Asunto(s)
Inflamasomas/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Línea Celular Tumoral , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necrosis , Proteínas Quinasas/química , Proteínas Quinasas/genética , Multimerización de Proteína/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
15.
Autophagy ; 12(7): 1083-93, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27172402

RESUMEN

Inhibition of prosurvival BCL2 family members can induce autophagy, but the mechanism is controversial. We have provided genetic evidence that BCL2 family members block autophagy by inhibiting BAX and BAK1, but others have proposed they instead inhibit BECN1. Here we confirm that small molecule BH3 mimetics can induce BAX- and BAK1-independent MAP1LC3B/LC3B lipidation, but this only occurred at concentrations far greater than required to induce apoptosis and dissociate canonical BH3 domain-containing proteins that bind more tightly than BECN1. Because high concentrations of a less-active enantiomer of ABT-263 also induced BAX- and BAK1-independent LC3B lipidation, induction of this marker of autophagy appears to be an off-target effect. Indeed, robust autophagic flux was not induced by BH3 mimetic compounds in the absence of BAX and BAK1. Therefore at concentrations that are on target and achievable in vivo, BH3 mimetics only induce autophagy in a BAX- and BAK1-dependent manner.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Compuestos de Anilina/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Ratones , Nitrofenoles/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/efectos de los fármacos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
16.
Bioorg Med Chem Lett ; 26(2): 262-264, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26718843

RESUMEN

The total synthesis of a biotinylated derivative of methyl rocaglate is described. This compound was accessed from synthetic methyl rocaglate (2) via formation of the propargyl amide and subsequent click reaction with a biotin azide. Affinity purification revealed that biotinylated rocaglate (8) and methyl rocaglate (2) bind with high specificity to translation factors eIF4AI/II. This remarkable selectivity is in line with that found for the more complex rocaglate silvestrol (3).


Asunto(s)
Benzofuranos/química , Biotina/química , Factor 4A Eucariótico de Iniciación/química , Animales , Benzofuranos/síntesis química , Benzofuranos/farmacología , Biotina/síntesis química , Biotina/farmacología , Factor 4A Eucariótico de Iniciación/metabolismo , Ratones , Conejos , Triterpenos/química
17.
Semin Cell Dev Biol ; 39: 63-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25736836

RESUMEN

Cells are constantly subjected to a vast range of potentially lethal insults, which may activate specific molecular pathways that have evolved to kill the cell. Cell death pathways are defined partly by their morphology, and more specifically by the molecules that regulate and enact them. As these pathways become more thoroughly characterized, interesting molecular links between them have emerged, some still controversial and others hinting at the physiological and pathophysiological roles these death pathways play. We describe specific molecular programs controlling cell death, with a focus on some of the distinct features of the pathways and the molecular links between them.


Asunto(s)
Apoptosis , Autofagia , Muerte Celular , Transducción de Señal , Animales , Humanos
18.
Nat Commun ; 6: 6442, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25778803

RESUMEN

Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2 (RIPK2) is critical for NOD-mediated NF-κB activation and cytokine production. Here we develop and characterize a selective RIPK2 kinase inhibitor, WEHI-345, which delays RIPK2 ubiquitylation and NF-κB activation downstream of NOD engagement. Despite only delaying NF-κB activation on NOD stimulation, WEHI-345 prevents cytokine production in vitro and in vivo and ameliorates experimental autoimmune encephalomyelitis in mice. Our study highlights the importance of the kinase activity of RIPK2 for proper immune responses and demonstrates the therapeutic potential of inhibiting RIPK2 in NOD-driven inflammatory diseases.


Asunto(s)
Citocinas/metabolismo , Inflamación/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Adenosina Trifosfato/química , Animales , Cromatografía Liquida , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Sistema Inmunológico , Concentración 50 Inhibidora , Interferón gamma/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , FN-kappa B/metabolismo , Unión Proteica , Conformación Proteica , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo
19.
Autophagy ; 10(8): 1474-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24991825

RESUMEN

It is widely thought that prosurvival BCL2 family members not only inhibit apoptosis, but also block autophagy by directly binding to BECN1/Beclin 1. To distinguish whether BCL2, BCL2L1/BCL-XL, or MCL1 influence autophagy directly, or indirectly, through their effects on apoptosis, we compared normal cells to those lacking BAX and BAK1. In cells able to undergo mitochondria-mediated apoptosis, inhibiting the endogenous prosurvival BCL2 family members induces both autophagy and cell death, but when BAX and BAK1 are deleted, neither inhibiting nor overexpressing BCL2, BCL2L1, or MCL1 causes any detectable effect on LC3B lipidation, LC3B turnover, or autolysosome formation. These results show that prosurvival BCL2 family members influence autophagy only indirectly, by inhibiting activation of BAX and BAK1.


Asunto(s)
Autofagia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis , Supervivencia Celular , Drosophila melanogaster/metabolismo , Humanos , Modelos Biológicos
20.
Structure ; 22(7): 941-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24909782

RESUMEN

The eukaryotic translation initiation factor 4AI (eIF4AI) is the prototypical DEAD-box RNA helicase. It has a "dumbbell" structure consisting of two domains connected by a flexible linker. Previous studies demonstrated that eIF4AI, in conjunction with eIF4H, bind to loop structures and repetitively unwind RNA hairpins. Here, we probe the conformational dynamics of eIF4AI in real time using single-molecule FRET. We demonstrate that eIF4AI/eIF4H complex can repetitively unwind RNA hairpins by transitioning between an eIF4AI "open" and a "closed" conformation using the energy derived from ATP hydrolysis. Our experiments directly track the conformational changes in the catalytic cycle of eIF4AI and eIF4H, and this correlates precisely with the kinetics of RNA unwinding. Furthermore, we show that the small-molecule eIF4A inhibitor hippuristanol locks eIF4AI in the closed conformation, thus efficiently inhibiting RNA unwinding. These results indicate that the large conformational changes undertaken by eIF4A during the helicase catalytic cycle are rate limiting.


Asunto(s)
Factor 4A Eucariótico de Iniciación/química , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , Animales , Secuencia de Bases , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...