Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1503: 62-77, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23391595

RESUMEN

Hyaluronan is a large glycosaminoglycan, which is abundant in the extracellular matrix of the developing rodent brain. In the adult brain however, levels of hyaluronan are significantly reduced. In this study, we used neurocan-GFP as a histochemical probe to analyze the distribution of hyaluronan in the adult mouse subventricular zone (SVZ), as well as in the rostral migratory stream (RMS). Interestingly, we observed that hyaluronan is generally downregulated in the adult brain, but notably remains at high levels in the SVZ and RMS; areas in which neural stem/progenitor cells (NSPCs) persist, proliferate and migrate throughout life. In addition, we found that the receptor for hyaluronan-mediated motility (Rhamm) was expressed in migrating neuroblasts in these areas, indicating that Rhamm could be involved in regulating hyaluronan-mediated cell migration. Hyaluronan levels are balanced by synthesis through hyaluronan synthases (Has) and degradation by hyaluronidases (Hyal). We found that Has1 and Has2, as well as Hyal1 and Hyal2 were expressed in GFAP positive cells in the adult rodent SVZ and RMS, indicating that astrocytes could be regulating hyaluronan-mediated functions in these areas. We also demonstrate that hyaluronan levels are substantially increased at six weeks following a photothrombotic stroke lesion to the adult mouse cortex. Furthermore, GFAP positive cells in the peri-infarct area express Rhamm. Thus, hyaluronan may be involved in regulating cell migration in the normal SVZ and RMS and could also be responsible for priming the peri-infarct area following an ischemic lesion for cell migration.


Asunto(s)
Isquemia Encefálica/patología , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Ventrículos Cerebrales/patología , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Células Madre Adultas/fisiología , Animales , Línea Celular Transformada , Proliferación Celular , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Lateralidad Funcional , Regulación de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ácido Hialurónico/clasificación , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neurocano/genética , Neurocano/metabolismo , Neuropéptidos/metabolismo , Ácidos Siálicos/metabolismo , Transfección
2.
J Neurosci ; 30(27): 9127-39, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610746

RESUMEN

The balance between self-renewal and differentiation of neural progenitor cells is an absolute requirement for the correct formation of the nervous system. Much is known about both the pathways involved in progenitor cell self-renewal, such as Notch signaling, and the expression of genes that initiate progenitor differentiation. However, whether these fundamental processes are mechanistically linked, and specifically how repression of progenitor self-renewal pathways occurs, is poorly understood. Nuclear factor I A (Nfia), a gene known to regulate spinal cord and neocortical development, has recently been implicated as acting downstream of Notch to initiate the expression of astrocyte-specific genes within the cortex. Here we demonstrate that, in addition to activating the expression of astrocyte-specific genes, Nfia also downregulates the activity of the Notch signaling pathway via repression of the key Notch effector Hes1. These data provide a significant conceptual advance in our understanding of neural progenitor differentiation, revealing that a single transcription factor can control both the activation of differentiation genes and the repression of the self-renewal genes, thereby acting as a pivotal regulator of the balance between progenitor and differentiated cell states.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción NFI/fisiología , Células Madre/fisiología , Telencéfalo/citología , Factores de Edad , Análisis de Varianza , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Inmunoprecipitación de Cromatina/métodos , Ensayo de Cambio de Movilidad Electroforética/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices/métodos , Mutación/genética , Factores de Transcripción NFI/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas/fisiología , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Telencéfalo/embriología , Factor de Transcripción HES-1 , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Neural Dev ; 4: 43, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19961580

RESUMEN

BACKGROUND: Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. RESULTS: Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. CONCLUSION: The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our results indicate that in addition to regulating the development of midline glial populations, Nfib also regulates the expression of neuropilin 1 within the cingulate cortex. Collectively, these data indicate that defects in midline glia and cingulate cortex neurons are associated with the callosal dysgenesis seen in Nfib-deficient mice, and provide insight into how the development of these cellular populations is controlled at a molecular level.


Asunto(s)
Cuerpo Calloso/embriología , Cuerpo Calloso/fisiopatología , Factores de Transcripción NFI/metabolismo , Neocórtex/embriología , Neocórtex/fisiopatología , Animales , Apoptosis/fisiología , Axones/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Giro del Cíngulo/embriología , Giro del Cíngulo/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción NFI/deficiencia , Factores de Transcripción NFI/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/fisiología , Neuronas/fisiología , Neuropilina-1/metabolismo , Prosencéfalo/embriología , Prosencéfalo/fisiopatología , Células Madre/fisiología
4.
Int Rev Neurobiol ; 87: 507-30, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19682657

RESUMEN

Nerve injuries induce severe disability and suffering for patients. Profound alterations in nerve trunks, neurons, and the central nervous system are induced rapidly after injury. This includes activation of intracellular signal transduction mechanisms aiming at the transfer of the cells into a regenerative state through the induction of the appropriate gene programs. The understanding of the neurobiological mechanisms that occur after injury can be used to design modern strategies for reconstruction after nerve injuries. Signal transduction mechanisms for instance may be targets for pharmacological intervention to stimulate nerve regeneration. Nerve injuries, particularly where there is a defect between the severed nerve trunks like in brachial plexus lesions, remain a challenge for the surgeon. Reconstruction of nerve injuries with a defect requires utilization of graft material, which can be of various designs. Application of autologous nerve grafts and use of nerve transfers are the most common clinical solutions to overcome problems with nerve defects. In this chapter we discuss the future perspective of nerve reconstruction with focus on signal transduction mechanisms and new avenues to bridge nerve defects using nanomodified graft surfaces.


Asunto(s)
Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Animales , Axones/fisiología , Humanos , Modelos Neurológicos , Nanotecnología , Neuritas/fisiología , Neuronas/fisiología , Procedimientos Neuroquirúrgicos/métodos , Traumatismos de los Nervios Periféricos , Nervios Periféricos/cirugía , Transducción de Señal
5.
J Neurosci ; 28(47): 12328-40, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19020026

RESUMEN

The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major site for adult neurogenesis. Critical to these functions is the proper organization of the hippocampus during development. Radial glia are known to regulate hippocampal formation, but their precise function in this process is yet to be defined. We find that in Nuclear Factor I b (Nfib)-deficient mice, a subpopulation of glia from the ammonic neuroepithelium of the hippocampus fail to develop. This results in severe morphological defects, including a failure of the hippocampal fissure, and subsequently the dentate gyrus, to form. As in wild-type mice, immature nestin-positive glia, which encompass all types of radial glia, populate the hippocampus in Nfib-deficient mice at embryonic day 15. However, these fail to mature into GLAST- and GFAP-positive glia, and the supragranular glial bundle is absent. In contrast, the fimbrial glial bundle forms, but alone is insufficient for proper hippocampal morphogenesis. Dentate granule neurons are present in the mutant hippocampus but their migration is aberrant, likely resulting from the lack of the complete radial glial scaffold usually provided by both glial bundles. These data demonstrate a role for Nfib in hippocampal fissure and dentate gyrus formation, and that distinct glial bundles are critical for correct hippocampal morphogenesis.


Asunto(s)
Hipocampo/citología , Hipocampo/embriología , Morfogénesis , Neuroglía/fisiología , Factores de Edad , Animales , Recuento de Células , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos , Transportador 1 de Aminoácidos Excitadores/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía , Ácido Glutámico/metabolismo , Histonas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis/genética , Factores de Transcripción NFI/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/metabolismo , Embarazo , Factores de Tiempo
6.
J Comp Neurol ; 508(3): 385-401, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18335562

RESUMEN

Three members of the Nuclear Factor I (Nfi) gene family of transcription factors; Nfia, Nfib, and Nfix are highly expressed in the developing mouse brain. Nfia and Nfib knockout mice display profound defects in the development of midline glial populations and the development of forebrain commissures (das Neves et al. [1999] Proc Natl Acad Sci U S A 96:11946-11951; Shu et al. [2003] J Neurosci 23:203-212; Steele-Perkins et al. [2005] Mol Cell Biol 25:685-698). These findings suggest that Nfi genes may regulate the substrate over which the commissural axons grow to reach targets in the contralateral hemisphere. However, these genes are also expressed in the cerebral cortex and, thus, it is important to assess whether this expression correlates with a cell-autonomous role in cortical development. Here we detail the protein expression of NFIA and NFIB during embryonic and postnatal mouse forebrain development. We find that both NFIA and NFIB are expressed in the deep cortical layers and subplate prenatally and display dynamic expression patterns postnatally. Both genes are also highly expressed in the developing hippocampus and in the diencephalon. We also find that principally neither NFIA nor NFIB are expressed in callosally projecting neurons postnatally, emphasizing the role for midline glial cell populations in commissure formation. However, a large proportion of laterally projecting neurons express both NFIA and NFIB, indicating a possible cell-autonomous role for these transcription factors in corticospinal neuron development. Collectively, these data suggest that, in addition to regulating the formation of axon guidance substrates, these genes also have cell-autonomous roles in cortical development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción NFI/metabolismo , Prosencéfalo , Animales , Animales Recién Nacidos , Células Cultivadas , Embrión de Mamíferos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFI/genética , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo
7.
Curr Opin Neurobiol ; 17(1): 3-14, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17275286

RESUMEN

Commissural formation in the mammalian brain is highly organised and regulated both by the cell-autonomous expression of transcription factors, and by non-cell-autonomous mechanisms including the formation of midline glial structures and their expression of specific axon guidance molecules. These mechanisms channel axons into the correct path and enable the subsequent connection of specific brain areas to their appropriate targets. Several key findings have been made over the past two years, including the discovery of novel mechanisms of action that 'classical' guidance factors such as the Slits, Netrins, and their receptors have in axon guidance. Moreover, novel guidance factors such as members of the Wnt family, and extracellular matrix components such as heparan sulphate proteoglycans, have been shown to be important for mammalian brain commissure formation. Additionally, there have been significant discoveries regarding the role of FGF signalling in the formation of midline glial structures. In this review, we discuss the most recent advances in the field that have contributed to our current understanding of commissural development in the telencephalon.


Asunto(s)
Cuerpo Calloso/embriología , Conos de Crecimiento/metabolismo , Vías Nerviosas/embriología , Neuroglía/metabolismo , Prosencéfalo/embriología , Animales , Diferenciación Celular/fisiología , Cuerpo Calloso/fisiología , Conos de Crecimiento/ultraestructura , Humanos , Factores de Crecimiento Nervioso/metabolismo , Vías Nerviosas/fisiología , Neuroglía/citología , Prosencéfalo/fisiología , Transducción de Señal/fisiología
8.
Novartis Found Symp ; 288: 230-242; discussion 242-5, 276-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18494262

RESUMEN

The Emx and Nuclear Factor One (Nfi) genes encode transcription factors that regulate numerous embryonic developmental processes. The two mammalian Emx genes, Emx1 and Emx2, are expressed in the embryonic cortex and regulate the specification of the cortex into different sensory and motor areas along the rostrocaudal axis. To date, few developmental processes have been attributed specifically to Emx1, with most analyses demonstrating a redundancy of function between Emx1 and Emx2, with Emx2 being most essential for development. Here we provide evidence that Emx1 and Emx2 regulate different developmental processes during corpus callosum formation and review how both genes function in cellular migration and the formation of cortical axon projections. The Nfi gene family is made up of four members, Nfia, Nfib, Nfic and Nfix. Expression analyses show that Nfia, Nfib and Nfix are expressed in the developing telencephalon. They play roles in patterning, glial development, cortical cell migration and axon guidance. We review the role of these genes in cortical cell migration, glial development and the formation of cortical axon projections, and examine the overlapping mutant phenotypes between the Emx and Nfi gene families.


Asunto(s)
Axones/fisiología , Corteza Cerebral/embriología , Proteínas de Homeodominio/fisiología , Factores de Transcripción NFI/fisiología , Telencéfalo/embriología , Factores de Transcripción/fisiología , Animales , Axones/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Núcleos Talámicos de la Línea Media/embriología , Modelos Biológicos , Factores de Transcripción NFI/genética , Neuroglía/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Telencéfalo/metabolismo , Factores de Transcripción/genética
9.
Neuroreport ; 16(15): 1655-9, 2005 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-16189472

RESUMEN

c-Jun activation has been implicated not only in neuronal apoptosis, but also in survival and regeneration. This Janus facet of c-Jun activation could be related to neuronal cell type or to the developmental stage of the neuron. We investigated c-Jun activation in E18 sensory neurons. Cultures of rat dorsal root ganglia neurons were maintained with or without the addition of nerve growth factor or the c-Jun N-terminal kinase inhibitor, (D)-JNKI1. Few dorsal root ganglia neurons survived nerve growth factor deprivation, whereas neurons supplied with nerve growth factor survived and exhibited extensive axonal outgrowth. Activated c-Jun was present in the nuclei of neurons with regenerating axons, but not in apoptotic neurons. c-Jun N-terminal kinase inhibition reduced the number of p-c-Jun immunoreactive and regenerating neurons, and increased cell death. Thus, activation of c-Jun seems to be required for survival and regeneration of developing sensory neurons.


Asunto(s)
Neuronas Aferentes/fisiología , Proteínas Proto-Oncogénicas c-jun/fisiología , Animales , Antracenos/farmacología , Apoptosis/fisiología , Axones/fisiología , Supervivencia Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Factor de Crecimiento Nervioso/fisiología , Embarazo , Ratas , Ratas Sprague-Dawley
10.
Exp Neurol ; 196(1): 184-94, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16126201

RESUMEN

We investigated the functional outcome of c-Jun activation in sympathetic and sensory neurons of neonatal rat superior cervical ganglion (SCG) and dorsal root ganglion (DRG), respectively. Distinctly different roles of c-Jun activation have been suggested for these two types of neurons. In dissociated sympathetic neurons, c-Jun has been demonstrated to promote apoptosis, whereas in sensory neurons it stimulates axonal outgrowth. In organ-cultured ganglia, we found that c-Jun was activated within 24 h of explantation in both types of neurons, and that the JNK inhibitor SP600125 could mitigate this response. In both types of neurons, c-Jun activation was also reduced by NGF treatment. Inhibition of c-Jun activation did not affect the viability of sympathetic neurons, whereas the number of apoptotic sensory neurons increased. Furthermore, inhibition of c-Jun reduced axonal outgrowth from both SCG and DRG. Thus, in organ culture, c-Jun activation may be required for axonal outgrowth and, at least in sensory neurons, it promotes survival. The role of ATF3, a neuronal marker of injury and a c-Jun dimerization partner, was also examined. We found an ATF3 induction in both SCG and DRG neurons, a response, which was reduced by JNK inhibition. The reduction of ATF3 upon JNK inhibition was much larger in DRG than in SCG, a result which might account for the higher number of apoptotic neurons in JNK inhibitor exposed DRG. Taken together, and contrary to our expectations, neonatal sympathetic and sensory neurons seem to respond to axonal injury similarly with respect to c-Jun activation, and in no case was this activation pro-apoptotic.


Asunto(s)
Fibras Adrenérgicas/metabolismo , Apoptosis/fisiología , Regeneración Nerviosa/fisiología , Neuronas Aferentes/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción Activador 3/metabolismo , Fibras Adrenérgicas/efectos de los fármacos , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Regeneración Nerviosa/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/efectos de los fármacos , Ganglio Cervical Superior/metabolismo
11.
Mol Cell Neurosci ; 29(2): 269-82, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15911351

RESUMEN

In the present study, we investigated if the previously observed JNK-mediated activation of c-Jun and induction of ATF3 could be ascribed to axonal transport of JNK signaling components, or if axonal transport of the transcription factors themselves contributes to the nuclear changes in injured sensory neurons. We observed retrograde axonal transport of a number of JNK upstream kinases in ligated rat sciatic nerve. In these preparations, axonal transport of JNK/p-JNK, the JNK scaffolding protein JIP, and the transcription factors ATF3 and ATF2/p-ATF2 was also found. No or little retrograde transport of c-Jun and p-c-Jun was found, whereas an anterograde transport of Hsp27, a protein previously reported in the context of p-c-Jun and ATF3, was observed. In separate experiments, we found that in vitro inhibition of axonal transport or axonal inhibition of JNK reduced the number of p-c-Jun- and ATF3-positive neuronal nuclei. The results suggest that retrograde axonal transport of JNK signaling components contributes to the injury induced c-Jun phosphorylation and ATF3 induction.


Asunto(s)
Transporte Axonal/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas Aferentes/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Neuropatía Ciática/metabolismo , Factores de Transcripción/metabolismo , Factor de Transcripción Activador 2 , Factor de Transcripción Activador 3 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Transporte Axonal/efectos de los fármacos , Axones/efectos de los fármacos , Axones/metabolismo , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/metabolismo , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Ligadura , Proteínas de Neoplasias/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Neuronas Aferentes/efectos de los fármacos , Fosforilación , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Neuropatía Ciática/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Mol Cell Neurosci ; 27(3): 267-79, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15519242

RESUMEN

The role of c-Jun activation for survival and regeneration of sensory neurons is unclear. Here we report that c-Jun N-terminal kinase (JNK)-mediated c-Jun activation is important for axonal outgrowth of sensory neurons in rat nodose and dorsal root ganglia (DRG). Peripheral severance of the vagus or the sciatic nerve resulted in a massive and rapid, but transient increase of the activated JNK (p-JNK) in neuronal nuclei, followed by c-Jun phosphorylation and activating transcription factor-3 (ATF3) induction. JNK inhibition by the selective JNK inhibitors SP600125 and (D)-JNKI1 did not affect neuronal survival in explanted or dissociated ganglia, but dramatically reduced axonal outgrowth, c-Jun activation, and ATF3 induction. Using retrograde labeling, we demonstrated that activated c-Jun (p-c-Jun) and ATF3 were associated with regenerative neurons. Taken together, our results suggest that JNK-mediated c-Jun activation is one of the first cell body reactions in response to nerve injury and that this activation and subsequent ATF3 induction are associated with axonal outgrowth.


Asunto(s)
Axones/enzimología , Ganglios Espinales/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Neuronas Aferentes/enzimología , Ganglio Nudoso/enzimología , Animales , Antracenos/farmacología , Axones/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Ganglio Nudoso/citología , Ganglio Nudoso/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA