Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 930: 172843, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38685421

RESUMEN

In modern industries, rare earth elements (REEs) are considered as essential metals and invaluable natural resources. Ion-adsorption deposits (IADs) are repositories of REE in the weathering crust soils, in which REEs are adsorbed on clay minerals. In the last few decades, the mining of REEs from IADs has caused substantial environmental damage owing to the overuse of leaching agents for the desorption and transport of REEs in weathering crust soils. These environmental issues have sparked extensive research interest in modeling REE transport dynamics in weathering crust soils. Nevertheless, because current models treat REE adsorption and transport independently, they do not accurately describe REE transport dynamics. Therefore, in this study, a unified workflow that synergizes adsorption and transport dynamics is proposed to predict REE transport. The adsorption of REEs on IADs was found to follow the Freundlich isotherm with the coefficient of determination exceeding 0.9826. The adsorption capacities of La3+, Sm3+, Er3+, and Y3+ reach 1.3127, 1.4423, 1.5793, and 1.1061 mg g-1 at 300 ppm, respectively. For the breakthrough curve, an advection-dispersion-adsorption-equation (ADAE) model was developed and utilized to accurately and reliably predict REE transport dynamics in soil columns. It was found the saturation time of REEs in soils is 39.22, 44.15, 50.64, and 32.17 h, respectively at 2 mL min-1 and decreased with the increase of flow velocity. The upper and lower limits of REE transport are ADAE-Freundlich and ADAE-Toth. More importantly, the model was applied to simulate REEs transport in field-scale weathering crusts over 100 years and predict REE accumulation in the highly weathered layered, which is found in natural weathering crusts. The qualitative prediction of REE transport dynamics in weathering crusts may help fundamentally lower the usage of leaching agents and mitigate concomitant the environmental impacts of mining.

2.
Proc Natl Acad Sci U S A ; 119(32): e2122520119, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921438

RESUMEN

Mineral dissolution significantly impacts many geological systems. Carbon released by diagenesis, carbon sequestration, and acid injection are examples where geochemical reactions, fluid flow, and solute transport are strongly coupled. The complexity in these systems involves interplay between various mechanisms that operate at timescales ranging from microseconds to years. Current experimental techniques characterize dissolution processes using static images that are acquired with long measurement times and/or low spatial resolution. These limitations prevent direct observation of how dissolution reactions progress within an intact rock with spatially heterogeneous mineralogy and morphology. We utilize microfluidic cells embedded with thin rock samples to visualize dissolution with significant temporal resolution (100 ms) in a large observation window (3 × 3 mm). We injected acidic fluid into eight shale samples ranging from 8 to 86 wt % carbonate. The pre- and postreaction microstructures are characterized at the scale of pores (0.1 to 1 µm) and fractures (1 to 1,000 µm). We observe that nonreactive particle exposure, fracture morphology, and loss of rock strength are strongly dependent on both the relative volume of reactive grains and their distribution. Time-resolved images of the rock unveil the spatiotemporal dynamics of dissolution, including two-phase flow effects in real time and illustrate the changes in the fracture interface across the range of compositions. Moreover, the dynamical data provide an approach for characterizing reactivity parameters of natural heterogeneous samples when porous media effects are not negligible. The platform and workflow provide real-time characterization of geochemical reactions and inform various subsurface engineering processes.

3.
Micromachines (Basel) ; 13(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630241

RESUMEN

Generating the desired solute concentration signal in micro-environments is vital to many applications ranging from micromixing to analyzing cellular response to a dynamic microenvironment. We propose a new modular design to generate targeted temporally varying concentration signals in microfluidic systems while minimizing perturbations to the flow field. The modularized design, here referred to as module-fluidics, similar in principle to interlocking toy bricks, is constructed from a combination of two building blocks and allows one to achieve versatility and flexibility in dynamically controlling input concentration. The building blocks are an oscillator and an integrator, and their combination enables the creation of controlled and complex concentration signals, with different user-defined time-scales. We show two basic connection patterns, in-series and in-parallel, to test the generation, integration, sampling and superposition of temporally-varying signals. All such signals can be fully characterized by analytic functions, in analogy with electric circuits, and allow one to perform design and optimization before fabrication. Such modularization offers a versatile and promising platform that allows one to create highly customizable time-dependent concentration inputs which can be targeted to the specific application of interest.

4.
Membranes (Basel) ; 11(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068543

RESUMEN

During reverse osmosis (RO) membrane filtration, performance is dramatically affected by fouling, which concurrently decreases the permeate flux while increasing the energy required to operate the system. Comprehensive design and optimization of RO systems are best served by an understanding of the coupling between membrane shape, local flow field, and fouling; however, current studies focus exclusively on simplified steady-state models that ignore the dynamic coupling between fluid flow, solute transport, and foulant accumulation. We developed a customized solver (SUMs: Stanford University Membrane Solver) under the open source finite volume simulator OpenFOAM to solve transient Navier-Stokes, advection-diffusion, and adsorption-desorption equations for foulant accumulation. We implemented two permeate flux reduction models at the membrane boundary: the resistance-in-series (RIS) model and the effective-pressure-drop (EPD) model. The two models were validated against filtration experiments by comparing the equilibrium flux, pressure drop, and fouling pattern on the membrane. Both models not only predict macroscopic quantities (e.g., permeate flux and pressure drop) but also the fouling pattern developed on the membrane, with a good match with experimental results. Furthermore, the models capture the temporal evolution of foulant accumulation and its coupling with flux reduction.

5.
Sci Rep ; 8(1): 4430, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535341

RESUMEN

Flow resistance caused by vegetation is a key parameter to properly assess flood management and river restoration. However, quantifying the friction factor or any of its alternative metrics, e.g. the drag coefficient, in canopies with complex geometry has proven elusive. We explore the effect of canopy morphology on vegetated channels flow structure and resistance by treating the canopy as a porous medium characterized by an effective permeability, a property that describes the ease with which water can flow through the canopy layer. We employ a two-domain model for flow over and within the canopy, which couples the log-law in the free layer to the Darcy-Brinkman equation in the vegetated layer. We validate the model analytical solutions for the average velocity profile within and above the canopy, the volumetric discharge and the friction factor against data collected across a wide range of canopy morphologies encountered in riverine systems. Results indicate agreement between model predictions and data for both simple and complex plant morphologies. For low submergence canopies, we find a universal scaling law that relates friction factor with canopy permeability and a rescaled bulk Reynolds number. This provides a valuable tool to assess habitats sustainability associated with hydro-dynamical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA