Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31702555

RESUMEN

The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.


Asunto(s)
Empalme Alternativo/genética , Conducta Animal , Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas de Unión al ARN/metabolismo , Temperatura , Animales , Relojes Circadianos/genética , Regulación hacia Abajo/genética , Drosophila melanogaster/genética , Genes de Insecto , Interferencia de ARN
3.
Cell ; 163(5): 1214-1224, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590423

RESUMEN

Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/metabolismo , Animales , Relojes Biológicos , Señalización del Calcio , Calmodulina/metabolismo , Calpaína , Ritmo Circadiano , Masculino , Mamíferos/fisiología , Proteolisis
4.
Science ; 340(6134): 879-82, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23687048

RESUMEN

A negative transcriptional feedback loop generates circadian rhythms in Drosophila. PERIOD (PER) is a critical state-variable in this mechanism, and its abundance is tightly regulated. We found that the Drosophila homolog of ATAXIN-2 (ATX2)--an RNA-binding protein implicated in human neurodegenerative diseases--was required for circadian locomotor behavior. ATX2 was necessary for PER accumulation in circadian pacemaker neurons and thus determined period length of circadian behavior. ATX2 was required for the function of TWENTY-FOUR (TYF), a crucial activator of PER translation. ATX2 formed a complex with TYF and promoted its interaction with polyadenylate-binding protein (PABP). Our work uncovers a role for ATX2 in circadian timing and reveals that this protein functions as an activator of PER translation in circadian neurons.


Asunto(s)
Ritmo Circadiano , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Proteínas Circadianas Period/biosíntesis , Animales , Ataxinas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , Interferencia de ARN
5.
J Neurosci ; 32(47): 16959-70, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175847

RESUMEN

Circadian rhythms are generated by well-conserved interlocked transcriptional feedback loops in animals. In Drosophila, the dimeric transcription factor CLOCK/CYCLE (CLK/CYC) promotes period (per), timeless (tim), vrille (vri), and PAR-domain protein 1 (Pdp1) transcription. PER and TIM negatively feed back on CLK/CYC transcriptional activity, whereas VRI and PDP1 negatively and positively regulate Clk transcription, respectively. Here, we show that the α isoform of the Drosophila FOS homolog KAYAK (KAY) is required for normal circadian behavior. KAY-α downregulation in circadian pacemaker neurons increases period length by 1.5 h. This behavioral phenotype is correlated with decreased expression of several circadian proteins. The strongest effects are on CLK and the neuropeptide PIGMENT DISPERSING FACTOR, which are both under VRI and PDP1 control. Consistently, KAY-α can bind to VRI and inhibit its interaction with the Clk promoter. Interestingly, KAY-α can also repress CLK activity. Hence, in flies with low KAY-α levels, CLK derepression would partially compensate for increased VRI repression, thus attenuating the consequences of KAY-α downregulation on CLK targets. We propose that the double role of KAY-α in the two transcriptional loops controlling Drosophila circadian behavior brings precision and stability to their oscillations.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Retroalimentación Fisiológica/fisiología , Neuronas/fisiología , Transcripción Genética/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Relojes Biológicos/genética , Células Cultivadas , ADN/genética , Proteínas de Drosophila/genética , Células HEK293 , Humanos , Inmunohistoquímica , Actividad Motora/fisiología , Neuropéptidos/genética , Neuropéptidos/fisiología , Plásmidos/genética , ARN Bicatenario/biosíntesis , ARN Bicatenario/genética , Transfección
6.
Curr Biol ; 22(19): 1851-7, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22981774

RESUMEN

A daily body temperature rhythm (BTR) is critical for the maintenance of homeostasis in mammals. Whereas mammals use internal energy to regulate body temperature, ectotherms typically regulate body temperature behaviorally [1]. Some ectotherms maintain homeostasis via a daily temperature preference rhythm (TPR) [2], but the underlying mechanisms are largely unknown. Here, we show that Drosophila exhibit a daily circadian clock-dependent TPR that resembles mammalian BTR. Pacemaker neurons critical for locomotor activity are not necessary for TPR; instead, the dorsal neuron 2 s (DN2s), whose function was previously unknown, is sufficient. This indicates that TPR, like BTR, is controlled independently from locomotor activity. Therefore, the mechanisms controlling temperature fluctuations in fly TPR and mammalian BTR may share parallel features. Taken together, our results reveal the existence of a novel DN2-based circadian neural circuit that specifically regulates TPR; thus, understanding the mechanisms of TPR will shed new light on the function and neural control of circadian rhythms.


Asunto(s)
Ritmo Circadiano/fisiología , Drosophila/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...