Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 78(3): 985-1009, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32447426

RESUMEN

The membrane lipids diacylglycerol (DAG) and phosphatidic acid (PA) are important second messengers that can regulate membrane transport by recruiting proteins to the membrane and by altering biophysical membrane properties. DAG and PA are involved in the transport from the Golgi apparatus to endosomes, and we have here investigated whether changes in these lipids might be important for regulation of transport to the Golgi using the protein toxin ricin. Modulation of DAG and PA levels using DAG kinase (DGK) and phospholipase D (PLD) inhibitors gave a strong increase in retrograde ricin transport, but had little impact on ricin recycling or degradation. Inhibitor treatment strongly affected the endosome morphology, increasing endosomal tubulation and size. Furthermore, ricin was present in these tubular structures together with proteins known to regulate retrograde transport. Using siRNA to knock down different isoforms of PLD and DGK, we found that several isoforms of PLD and DGK are involved in regulating ricin transport to the Golgi. Finally, by performing lipidomic analysis we found that the DGK inhibitor gave a weak, but expected, increase in DAG levels, while the PLD inhibitor gave a strong and unexpected increase in DAG levels, showing that it is important to perform lipidomic analysis when using inhibitors of lipid metabolism.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Fosfolipasa D/metabolismo , Línea Celular Tumoral , Diacilglicerol Quinasa/antagonistas & inhibidores , Diacilglicerol Quinasa/genética , Diglicéridos/metabolismo , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Lipidómica/métodos , Lípidos/análisis , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Pirimidinonas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ricina/metabolismo , Tiazoles/farmacología
2.
Oncotarget ; 7(48): 79885-79900, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27829218

RESUMEN

2-fluoro-2-deoxy-D-glucose (FDG), labeled with 18F radioisotope, is the most common imaging agent used for positron emission tomography (PET) in oncology. However, little is known about the cellular effects of FDG. Another glucose analogue, 2-deoxy-D-glucose (2DG), has been shown to affect many cellular functions, including intracellular transport and lipid metabolism, and has been found to improve the efficacy of cancer chemotherapeutic agents in vivo. Thus, in the present study, we have investigated cellular effects of FDG with the focus on changes in cellular lipids and intracellular transport. By quantifying more than 200 lipids from 17 different lipid classes in HEp-2 cells and by analyzing glycosphingolipids from MCF-7, HT-29 and HBMEC cells, we have discovered that FDG treatment inhibits glucosylceramide synthesis and thus reduces cellular levels of glycosphingolipids. In addition, in HEp-2 cells the levels and/or species composition of other lipid classes, namely diacylglycerols, phosphatidic acids and phosphatidylinositols, were found to change upon treatment with FDG. Furthermore, we show here that FDG inhibits retrograde Shiga toxin transport and is much more efficient in protecting cells against the toxin than 2DG. In summary, our data reveal novel effects of FDG on cellular transport and glycosphingolipid metabolism, which suggest a potential clinical application of FDG as an adjuvant for cancer chemotherapy.


Asunto(s)
Fluorodesoxiglucosa F18/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Células Cultivadas , Endocitosis/efectos de los fármacos , Endocitosis/efectos de la radiación , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de la radiación , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/efectos de la radiación , Células HT29 , Humanos , Metabolismo de los Lípidos/efectos de la radiación , Células MCF-7 , Metaboloma/efectos de la radiación , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Toxina Shiga/metabolismo
3.
Sci Rep ; 6: 30336, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27458147

RESUMEN

Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-ß-cyclodextrin (mßCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3.


Asunto(s)
Lisofosfolípidos/farmacología , Glicoesfingolípidos Neutros/metabolismo , Toxina Shiga/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HeLa , Humanos , Lisofosfolípidos/química , Unión Proteica , beta-Ciclodextrinas/farmacología
4.
Biochem J ; 470(1): 23-37, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26251444

RESUMEN

2-Deoxy-D-glucose (2DG) is a structural analogue of glucose with well-established applications as an inhibitor of glycolysis and N-glycosylation. Importantly, 2DG has been shown to improve the efficacy of several cancer chemotherapeutic agents in vivo and thus it is in clinical studies in combination with chemotherapy and radiotherapy. However, although 2DG has been demonstrated to modulate many cellular functions, including autophagy, apoptosis and cell cycle control, little is known about the effects of 2DG on intracellular transport, which is of great importance when predicting the effects of 2DG on therapeutic agents. In addition to proteins, lipids play important roles in cellular signalling and in controlling cellular trafficking. We have, in the present study, investigated the effects of 2DG on cellular lipid composition and by use of protein toxins we have studied 2DG-mediated changes in intracellular trafficking. By quantifying more than 200 individual lipid species from 17 different lipid classes, we have found that 2DG treatment changes the levels and/or species composition of several lipids, such as phosphatidylinositol (PI), diacylglycerol (DAG), cholesteryl ester (CE), ceramide (Cer) and lysophospho-lipids. Moreover, 2DG becomes incorporated into the carbohydrate moiety of glycosphingolipids (GSLs). In addition, we have discovered that 2DG protects cells against Shiga toxins (Stxs) and inhibits release of the cytotoxic StxA1 moiety in the endoplasmic reticulum (ER). The data indicate that the 2DG-induced protection against Stx is independent of inhibition of glycolysis or N-glycosylation, but rather mediated via the depletion of Ca(2+) from cellular reservoirs by 2DG. In conclusion, our results reveal novel actions of 2DG on cellular lipids and Stx toxicity.


Asunto(s)
Citoprotección/efectos de los fármacos , Desoxiglucosa/farmacología , Lípidos de la Membrana/metabolismo , Toxinas Shiga/toxicidad , Línea Celular , Citoprotección/fisiología , Humanos
5.
Cell Mol Life Sci ; 71(21): 4285-300, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24740796

RESUMEN

Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC50) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.


Asunto(s)
Glicerol/química , Éteres de Glicerilo/química , Toxinas Shiga/química , Transporte Biológico , Biotinilación , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Éter/química , Glicoesfingolípidos/química , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Lípidos/química , Ácido Palmítico/química , Toxina Shiga/química , Trihexosilceramidas/química
6.
Toxins (Basel) ; 3(9): 1203-19, 2011 09.
Artículo en Inglés | MEDLINE | ID: mdl-22069763

RESUMEN

Ricin is a protein toxin classified as a bioterror agent, for which there are no known treatment options available after intoxication. It is composed of an enzymatically active A-chain connected by a disulfide bond to a cell binding B-chain. After internalization by endocytosis, ricin is transported retrogradely to the Golgi and ER, from where the ricin A-chain is translocated to the cytosol where it inhibits protein synthesis and thus induces cell death. We have identified cytoplasmic phospholipase A(2) (PLA(2)) as an important factor in ricin retrograde transport. Inhibition of PLA(2) protects against ricin challenge, however the toxin can still be endocytosed and transported to the Golgi. Interestingly, ricin transport from the Golgi to the ER is strongly impaired in response to PLA(2) inhibition. Confocal microscopy analysis shows that ricin is still colocalized with the trans-Golgi marker TGN46 in the presence of PLA(2) inhibitor, but less is colocalized with the cis-Golgi marker GM130. We propose that PLA(2) inhibition results in impaired ricin transport through the Golgi stack, thus preventing it from reaching the ER. Consequently, ricin cannot be translocated to the cytosol to exert its toxic action.


Asunto(s)
Sustancias para la Guerra Química/metabolismo , Fosfolipasas A2/metabolismo , Ricina/metabolismo , Línea Celular Tumoral , Clorobenzoatos/farmacología , Cinamatos/farmacología , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Naftalenos/farmacología , Inhibidores de Fosfolipasa A2 , Transporte de Proteínas/efectos de los fármacos , Pironas/farmacología , ortoaminobenzoatos/farmacología , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA