Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 81(4): 637-48, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25640854

RESUMEN

Symbiotic nitrogen fixation is a process of considerable economic, ecological and scientific interest. The central enzyme nitrogenase reduces H(+) alongside N2 , and the evolving H2 allows a continuous and non-invasive in vivo measurement of nitrogenase activity. The objective of this study was to show that an elaborated set-up providing such measurements for periods as long as several weeks will produce specific insight into the nodule activity's dependence on environmental conditions and genotype features. A system was developed that allows the air-proof separation of a root/nodule and a shoot compartment. H2 evolution in the root/nodule compartment can be monitored continuously. Nutrient solution composition, temperature, CO2 concentration and humidity around the shoots can concomitantly be maintained and manipulated. Medicago truncatula plants showed vigorous growth in the system when relying on nitrogen fixation. The set-up was able to provide specific insights into nitrogen fixation. For example, nodule activity depended on the temperature in their surroundings, but not on temperature or light around shoots. Increased temperature around the nodules was able to induce higher nodule activity in darkness versus light around shoots for a period of as long as 8 h. Conditions that affected the N demand of the shoots (ammonium application, Mg or P depletion, super numeric nodules) induced consistent and complex daily rhythms in nodule activity. It was shown that long-term continuous measurements of nodule activity could be useful for revealing special features in mutants and could be of importance when synchronizing nodule harvests for complex analysis of their metabolic status.


Asunto(s)
Medicago truncatula/fisiología , Nitrogenasa/análisis , Nódulos de las Raíces de las Plantas/fisiología , Ritmo Circadiano , Fijación del Nitrógeno , Temperatura
2.
Front Plant Sci ; 6: 1133, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779207

RESUMEN

Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be induced by increased formation of NCR peptides and necessitates an efficient iron supply to the bacteroid, which is probably mediated by nicotianamine. The paper is dedicated to the 85th birthday of Prof. Dr. Günther Schilling, University of Halle/Wittenberg, Germany, https://de.wikipedia.org/wiki/Günther_Schilling.

3.
J Exp Bot ; 65(20): 6035-48, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25151618

RESUMEN

Legume nodules are plant tissues with an exceptionally high concentration of phosphorus (P), which, when there is scarcity of P, is preferentially maintained there rather than being allocated to other plant organs. The hypothesis of this study was that nodules are affected before the P concentration in the organ declines during whole-plant P depletion. Nitrogen (N2) fixation and P concentration in various organs were monitored during a whole-plant P-depletion process in Medicago truncatula. Nodule gene expression was profiled through RNA-seq at day 5 of P depletion. Until that point in time P concentration in leaves reached a lower threshold but was maintained in nodules. N2-fixation activity per plant diverged from that of fully nourished plants beginning at day 5 of the P-depletion process, primarily because fewer nodules were being formed, while the activity of the existing nodules was maintained for as long as two weeks into P depletion. RNA-seq revealed nodule acclimation on a molecular level with a total of 1140 differentially expressed genes. Numerous genes for P remobilization from organic structures were increasingly expressed. Various genes involved in nodule malate formation were upregulated, while genes involved in fermentation were downregulated. The fact that nodule formation was strongly repressed with the onset of P deficiency is reflected in the differential expression of various genes involved in nodulation. It is concluded that plants follow a strategy to maintain N2 fixation and viable leaf tissue as long as possible during whole-plant P depletion to maintain their ability to react to emerging new P sources (e.g. through active P acquisition by roots).


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Fósforo/deficiencia , Sinorhizobium meliloti/fisiología , Transcriptoma , Aclimatación , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fenotipo , Fósforo/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Análisis de Secuencia de ARN , Simbiosis
4.
Int J Mol Sci ; 15(4): 6031-45, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24727372

RESUMEN

Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants.


Asunto(s)
Medicago truncatula/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Medicago truncatula/crecimiento & desarrollo , Nitrógeno/química , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fósforo/química , Fósforo/metabolismo , Fotosíntesis , Brotes de la Planta/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo
5.
Plant Physiol ; 164(1): 400-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24285852

RESUMEN

The mechanism through which nitrate reduces the activity of legume nodules is controversial. The objective of the study was to follow Medicago truncatula nodule activity after nitrate provision continuously and to identify molecular mechanisms, which down-regulate the activity of the nodules. Nodule H2 evolution started to decline after about 4 h of nitrate application. At that point in time, a strong shift in nodule gene expression (RNA sequencing) had occurred (1,120 differentially expressed genes). The most pronounced effect was the down-regulation of 127 genes for nodule-specific cysteine-rich peptides. Various other nodulins were also strongly down-regulated, in particular all the genes for leghemoglobins. In addition, shifts in the expression of genes involved in cellular iron allocation and mitochondrial ATP synthesis were observed. Furthermore, the expression of numerous genes for the formation of proteins and glycoproteins with no obvious function in nodules (e.g. germins, patatin, and thaumatin) was strongly increased. This occurred in conjunction with an up-regulation of genes for proteinase inhibitors, in particular those containing the Kunitz domain. The additionally formed proteins might possibly be involved in reducing nodule oxygen permeability. Between 4 and 28 h of nitrate exposure, a further reduction in nodule activity occurred, and the number of differentially expressed genes almost tripled. In particular, there was a differential expression of genes connected with emerging senescence. It is concluded that nitrate exerts rapid and manifold effects on nitrogenase activity. A certain degree of nitrate tolerance might be achieved when the down-regulatory effect on late nodulins can be alleviated.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/fisiología , Nitratos/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Adenosina Trifosfato/metabolismo , Hierro/metabolismo , Leghemoglobina/genética , Leghemoglobina/metabolismo , Medicago truncatula/efectos de los fármacos , Medicago truncatula/genética , Proteínas de la Membrana/genética , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitratos/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN de Planta , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA