Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Sci Rep ; 13(1): 1971, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737471

RESUMEN

The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Genómica , Algoritmos , Fenotipo
3.
Genome Biol ; 23(1): 268, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575460

RESUMEN

BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Caracteres Sexuales , Fenotipo , Lípidos/genética , Polimorfismo de Nucleótido Simple , Pleiotropía Genética
4.
Hosp Pediatr ; 12(12): 1066-1072, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36404764

RESUMEN

BACKGROUND AND OBJECTIVES: Diagnostic uncertainty is challenging to identify and study in clinical practice. This study compares differences in diagnosis code and health care utilization between a unique cohort of hospitalized children with uncertain diagnoses (UD) and matched controls. PATIENTS AND METHODS: This case-control study was conducted at Cincinnati Children's Hospital Medical Center. Cases were defined as patients admitted to the pediatric hospital medicine service and having UDs during their hospitalization. Control patients were matched on age strata, biological sex, and time of year. Outcomes included type of diagnosis codes used (ie, disease- or nondisease-based) and change in code from admission to discharge. Differences in diagnosis codes were evaluated using conditional logistic regression. Health care utilization outcomes included hospital length of stay (LOS), hospital transfer, consulting service utilization, rapid response team activations, escalation to intensive care, and 30-day health care reutilization. Differences in health care utilization were assessed using bivariate statistics. RESULTS: Our final cohort included 240 UD cases and 911 matched controls. Compared with matched controls, UD cases were 8 times more likely to receive a nondisease-based diagnosis code (odds ratio [OR], 8.0; 95% confidence interval [CI], 5.7-11.2) and 2.5 times more likely to have a change in their primary International Classification of Disease, 10th revision, diagnosis code between admission and discharge (OR, 2.5; 95% CI, 1.9-3.4). UD cases had a longer average LOS and higher transfer rates to our main hospital campus, consulting service use, and 30-day readmission rates. CONCLUSIONS: Hospitalized children with UDs have meaningfully different patterns of diagnosis code use and increased health care utilization compared with matched controls.


Asunto(s)
Hospitalización , Aceptación de la Atención de Salud , Niño , Humanos , Incertidumbre , Estudios de Casos y Controles , Hospitales Pediátricos
5.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
6.
Nature ; 600(7890): 675-679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887591

RESUMEN

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Grupos de Población
7.
Int J Obes (Lond) ; 45(1): 155-169, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32952152

RESUMEN

BACKGROUND/OBJECTIVES: Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170 MC4R variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of MC4R variants in large cohort of different ancestries, we evaluated the MC4R coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus. SUBJECTS/METHODS: The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping. RESULTS: Targeted sequencing data of MC4R revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m2. In GWAS analysis, in addition to known risk haplotype upstream of MC4R (best variant rs6567160 (P = 5.36 × 10-25, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (P = 6.23 × 10-08, Beta = -0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI. CONCLUSIONS: MC4R screening in a large eMERGE cohort confirmed many previous findings, extend the MC4R pleotropic effects, and discovered additional MC4R rare alleles that probably contribute to obesity.


Asunto(s)
Variación Genética/genética , Estudio de Asociación del Genoma Completo , Obesidad , Receptor de Melanocortina Tipo 4/genética , Adulto , Anciano , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/epidemiología , Obesidad/genética
8.
JMIR Med Inform ; 8(9): e19774, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32876578

RESUMEN

BACKGROUND: At present, electronic health records (EHRs) are the central focus of clinical informatics given their role as the primary source of clinical data. Despite their granularity, the EHR data heavily rely on manual input and are prone to human errors. Many other sources of data exist in the clinical setting, including digital medical devices such as smart infusion pumps. When incorporated with prescribing data from EHRs, smart pump records (SPRs) are capable of shedding light on actions that take place during the medication use process. However, harmoniz-ing the 2 sources is hindered by multiple technical challenges, and the data quality and utility of SPRs have not been fully realized. OBJECTIVE: This study aims to evaluate the quality and utility of SPRs incorporated with EHR data in detecting medication administration errors. Our overarching hypothesis is that SPRs would contribute unique information in the med-ication use process, enabling more comprehensive detection of discrepancies and potential errors in medication administration. METHODS: We evaluated the medication use process of 9 high-risk medications for patients admitted to the neonatal inten-sive care unit during a 1-year period. An automated algorithm was developed to align SPRs with their medica-tion orders in the EHRs using patient ID, medication name, and timestamp. The aligned data were manually re-viewed by a clinical research coordinator and 2 pediatric physicians to identify discrepancies in medication ad-ministration. The data quality of SPRs was assessed with the proportion of information that was linked to valid EHR orders. To evaluate their utility, we compared the frequency and severity of discrepancies captured by the SPR and EHR data, respectively. A novel concordance assessment was also developed to understand the detec-tion power and capabilities of SPR and EHR data. RESULTS: Approximately 70% of the SPRs contained valid patient IDs and medication names, making them feasible for data integration. After combining the 2 sources, the investigative team reviewed 2307 medication orders with 10,575 medication administration records (MARs) and 23,397 SPRs. A total of 321 MAR and 682 SPR dis-crepancies were identified, with vasopressors showing the highest discrepancy rates, followed by narcotics and total parenteral nutrition. Compared with EHR MARs, substantial dosing discrepancies were more commonly detectable using the SPRs. The concordance analysis showed little overlap between MAR and SPR discrepan-cies, with most discrepancies captured by the SPR data. CONCLUSIONS: We integrated smart infusion pump information with EHR data to analyze the most error-prone phases of the medication lifecycle. The findings suggested that SPRs could be a more reliable data source for medication error detection. Ultimately, it is imperative to integrate SPR information with EHR data to fully detect and mitigate medication administration errors in the clinical setting.

9.
J Biomed Inform ; 99: 103293, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31542521

RESUMEN

BACKGROUND: Implementation of phenotype algorithms requires phenotype engineers to interpret human-readable algorithms and translate the description (text and flowcharts) into computable phenotypes - a process that can be labor intensive and error prone. To address the critical need for reducing the implementation efforts, it is important to develop portable algorithms. METHODS: We conducted a retrospective analysis of phenotype algorithms developed in the Electronic Medical Records and Genomics (eMERGE) network and identified common customization tasks required for implementation. A novel scoring system was developed to quantify portability from three aspects: Knowledge conversion, clause Interpretation, and Programming (KIP). Tasks were grouped into twenty representative categories. Experienced phenotype engineers were asked to estimate the average time spent on each category and evaluate time saving enabled by a common data model (CDM), specifically the Observational Medical Outcomes Partnership (OMOP) model, for each category. RESULTS: A total of 485 distinct clauses (phenotype criteria) were identified from 55 phenotype algorithms, corresponding to 1153 customization tasks. In addition to 25 non-phenotype-specific tasks, 46 tasks are related to interpretation, 613 tasks are related to knowledge conversion, and 469 tasks are related to programming. A score between 0 and 2 (0 for easy, 1 for moderate, and 2 for difficult portability) is assigned for each aspect, yielding a total KIP score range of 0 to 6. The average clause-wise KIP score to reflect portability is 1.37 ±â€¯1.38. Specifically, the average knowledge (K) score is 0.64 ±â€¯0.66, interpretation (I) score is 0.33 ±â€¯0.55, and programming (P) score is 0.40 ±â€¯0.64. 5% of the categories can be completed within one hour (median). 70% of the categories take from days to months to complete. The OMOP model can assist with vocabulary mapping tasks. CONCLUSION: This study presents firsthand knowledge of the substantial implementation efforts in phenotyping and introduces a novel metric (KIP) to measure portability of phenotype algorithms for quantifying such efforts across the eMERGE Network. Phenotype developers are encouraged to analyze and optimize the portability in regards to knowledge, interpretation and programming. CDMs can be used to improve the portability for some 'knowledge-oriented' tasks.


Asunto(s)
Registros Electrónicos de Salud/clasificación , Informática Médica/métodos , Algoritmos , Genómica , Humanos , Fenotipo , Estudios Retrospectivos
10.
BMC Med ; 17(1): 135, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31311600

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver illness with a genetically heterogeneous background that can be accompanied by considerable morbidity and attendant health care costs. The pathogenesis and progression of NAFLD is complex with many unanswered questions. We conducted genome-wide association studies (GWASs) using both adult and pediatric participants from the Electronic Medical Records and Genomics (eMERGE) Network to identify novel genetic contributors to this condition. METHODS: First, a natural language processing (NLP) algorithm was developed, tested, and deployed at each site to identify 1106 NAFLD cases and 8571 controls and histological data from liver tissue in 235 available participants. These include 1242 pediatric participants (396 cases, 846 controls). The algorithm included billing codes, text queries, laboratory values, and medication records. Next, GWASs were performed on NAFLD cases and controls and case-only analyses using histologic scores and liver function tests adjusting for age, sex, site, ancestry, PC, and body mass index (BMI). RESULTS: Consistent with previous results, a robust association was detected for the PNPLA3 gene cluster in participants with European ancestry. At the PNPLA3-SAMM50 region, three SNPs, rs738409, rs738408, and rs3747207, showed strongest association (best SNP rs738409 p = 1.70 × 10- 20). This effect was consistent in both pediatric (p = 9.92 × 10- 6) and adult (p = 9.73 × 10- 15) cohorts. Additionally, this variant was also associated with disease severity and NAFLD Activity Score (NAS) (p = 3.94 × 10- 8, beta = 0.85). PheWAS analysis link this locus to a spectrum of liver diseases beyond NAFLD with a novel negative correlation with gout (p = 1.09 × 10- 4). We also identified novel loci for NAFLD disease severity, including one novel locus for NAS score near IL17RA (rs5748926, p = 3.80 × 10- 8), and another near ZFP90-CDH1 for fibrosis (rs698718, p = 2.74 × 10- 11). Post-GWAS and gene-based analyses identified more than 300 genes that were used for functional and pathway enrichment analyses. CONCLUSIONS: In summary, this study demonstrates clear confirmation of a previously described NAFLD risk locus and several novel associations. Further collaborative studies including an ethnically diverse population with well-characterized liver histologic features of NAFLD are needed to further validate the novel findings.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Anciano , Índice de Masa Corporal , Estudios de Casos y Controles , Redes Comunitarias/organización & administración , Redes Comunitarias/estadística & datos numéricos , Progresión de la Enfermedad , Registros Electrónicos de Salud/organización & administración , Registros Electrónicos de Salud/estadística & datos numéricos , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica/organización & administración , Genómica/estadística & datos numéricos , Humanos , Lipasa/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Morbilidad , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Fenotipo , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética
11.
J Biomed Inform ; 96: 103253, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31325501

RESUMEN

BACKGROUND: Implementing clinical phenotypes across a network is labor intensive and potentially error prone. Use of a common data model may facilitate the process. METHODS: Electronic Medical Records and Genomics (eMERGE) sites implemented the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model across their electronic health record (EHR)-linked DNA biobanks. Two previously implemented eMERGE phenotypes were converted to OMOP and implemented across the network. RESULTS: It was feasible to implement the common data model across sites, with laboratory data producing the greatest challenge due to local encoding. Sites were then able to execute the OMOP phenotype in less than one day, as opposed to weeks of effort to manually implement an eMERGE phenotype in their bespoke research EHR databases. Of the sites that could compare the current OMOP phenotype implementation with the original eMERGE phenotype implementation, specific agreement ranged from 100% to 43%, with disagreements due to the original phenotype, the OMOP phenotype, changes in data, and issues in the databases. Using the OMOP query as a standard comparison revealed differences in the original implementations despite starting from the same definitions, code lists, flowcharts, and pseudocode. CONCLUSION: Using a common data model can dramatically speed phenotype implementation at the cost of having to populate that data model, though this will produce a net benefit as the number of phenotype implementations increases. Inconsistencies among the implementations of the original queries point to a potential benefit of using a common data model so that actual phenotype code and logic can be shared, mitigating human error in reinterpretation of a narrative phenotype definition.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Bases de Datos Factuales , Diabetes Mellitus Tipo 2/diagnóstico , Registros Electrónicos de Salud , Recolección de Datos , Humanos , Informática Médica , National Human Genome Research Institute (U.S.) , Estudios Observacionales como Asunto , Evaluación de Resultado en la Atención de Salud , Fenotipo , Proyectos de Investigación , Programas Informáticos , Estados Unidos
12.
J Med Internet Res ; 21(5): e13047, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31120022

RESUMEN

BACKGROUND: The continued digitization and maturation of health care information technology has made access to real-time data easier and feasible for more health care organizations. With this increased availability, the promise of using data to algorithmically detect health care-related events in real-time has become more of a reality. However, as more researchers and clinicians utilize real-time data delivery capabilities, it has become apparent that simply gaining access to the data is not a panacea, and some unique data challenges have emerged to the forefront in the process. OBJECTIVE: The aim of this viewpoint was to highlight some of the challenges that are germane to real-time processing of health care system-generated data and the accurate interpretation of the results. METHODS: Distinct challenges related to the use and processing of real-time data for safety event detection were compiled and reported by several informatics and clinical experts at a quaternary pediatric academic institution. The challenges were collated from the experiences of the researchers implementing real-time event detection on more than half a dozen distinct projects. The challenges have been presented in a challenge category-specific challenge-example format. RESULTS: In total, 8 major types of challenge categories were reported, with 13 specific challenges and 9 specific examples detailed to provide a context for the challenges. The examples reported are anchored to a specific project using medication order, medication administration record, and smart infusion pump data to detect discrepancies and errors between the 3 datasets. CONCLUSIONS: The use of real-time data to drive safety event detection and clinical decision support is extremely powerful, but it presents its own set of challenges that include data quality and technical complexity. These challenges must be recognized and accommodated for if the full promise of accurate, real-time safety event clinical decision support is to be realized.


Asunto(s)
Análisis de Datos , Sistemas de Apoyo a Decisiones Clínicas/normas , Registros Electrónicos de Salud/normas , Humanos
13.
Int J Med Inform ; 111: 45-50, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29425633

RESUMEN

BACKGROUND AND AIM: Many clinical research studies claim to collect data that are also captured in the electronic medical record (EMR). We evaluate the potential for EMR data to replace prospective research data collection. METHODS: Using a dataset of 358 surgical patients enrolled in a prospective study, we examined the completeness and agreement of EMR and study entries for several variables, including the patient's stay in the post-operative care unit (PACU), surgical pain relief and pain medication side effects. RESULTS: For all variables with a completeness percentage, values were greater than 96%. For the adverse event variables, we found slight to substantial agreement (Cohen's kappa), ranging from 0.19 (nausea) to 0.48 (respiratory depression) to 0.73 (emesis). CONCLUSION: The potential to use EMR data as a replacement for prospective research data collection shows promise, but for now, should be evaluated on a variable-by-variable basis.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Recolección de Datos/métodos , Registros Electrónicos de Salud/estadística & datos numéricos , Dolor Postoperatorio/terapia , Humanos , Estudios Prospectivos
14.
J Am Med Inform Assoc ; 25(5): 555-563, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329456

RESUMEN

Background: Timely identification of medication administration errors (MAEs) promises great benefits for mitigating medication errors and associated harm. Despite previous efforts utilizing computerized methods to monitor medication errors, sustaining effective and accurate detection of MAEs remains challenging. In this study, we developed a real-time MAE detection system and evaluated its performance prior to system integration into institutional workflows. Methods: Our prospective observational study included automated MAE detection of 10 high-risk medications and fluids for patients admitted to the neonatal intensive care unit at Cincinnati Children's Hospital Medical Center during a 4-month period. The automated system extracted real-time medication use information from the institutional electronic health records and identified MAEs using logic-based rules and natural language processing techniques. The MAE summary was delivered via a real-time messaging platform to promote reduction of patient exposure to potential harm. System performance was validated using a physician-generated gold standard of MAE events, and results were compared with those of current practice (incident reporting and trigger tools). Results: Physicians identified 116 MAEs from 10 104 medication administrations during the study period. Compared to current practice, the sensitivity with automated MAE detection was improved significantly from 4.3% to 85.3% (P = .009), with a positive predictive value of 78.0%. Furthermore, the system showed potential to reduce patient exposure to harm, from 256 min to 35 min (P < .001). Conclusions: The automated system demonstrated improved capacity for identifying MAEs while guarding against alert fatigue. It also showed promise for reducing patient exposure to potential harm following MAE events.


Asunto(s)
Algoritmos , Unidades de Cuidado Intensivo Neonatal , Sistemas de Entrada de Órdenes Médicas , Errores de Medicación/prevención & control , Preparaciones Farmacéuticas/administración & dosificación , Gestión de Riesgos , Sistemas de Computación , Registros Electrónicos de Salud , Humanos , Recién Nacido , Errores de Medicación/psicología , Estudios Prospectivos
15.
J Am Med Inform Assoc ; 25(3): 309-314, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126118

RESUMEN

OBJECTIVE: Geocoding and characterizing geographic, community, and environmental characteristics of study participants is frequently done in epidemiological studies. However, participant addresses are identifiable protected health information (PHI) and geocoding must be conducted in a Health Insurance Portability and Accountability Act-compliant manner. Our objective was to create a software application for this process that addresses limitations in current approaches. MATERIALS AND METHODS: We used a containerization platform to create DeGAUSS (Decentralized Geomarker Assessment for Multi-Site Studies), a software application that facilitates reproducible geocoding and geomarker assessment while maintaining the confidentiality of PHI. To validate the software, 215 350 addresses in Hamilton County, Ohio, were geocoded using DeGAUSS, ArcGIS, Google, and SAS and compared to a gold-standard approach. We distributed the DeGAUSS software to sites in an ongoing multisite study (Electronic Medical Records and Genomics, or eMERGE), and individual sites independently geocoded and assigned median census tract-level income and distance to nearest major roadway to their participants' addresses, removed associated PHI, and returned deidentified data. RESULTS: Within a multisite study, 52 244 study participants' addresses across 5 sites were geocoded with a median distance to roadway of 10 022m and a median census tract income of $57 266, demonstrating the feasibility of DeGAUSS within a multisite study. Compared to other commonly used geocoding platforms, DeGAUSS had similar geocoding and geomarker assessment accuracies. CONCLUSION: The open source DeGAUSS software overcomes multiple challenges in the use of address data in multisite studies and also serves as a more general reproducible research tool for geocoding and geomarker assessment.

16.
Biomed Inform Insights ; 9: 1178222617713018, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634427

RESUMEN

The objective of this study was to determine whether the Food and Drug Administration's Adverse Event Reporting System (FAERS) data set could serve as the basis of automated electronic health record (EHR) monitoring for the adverse drug reaction (ADR) subset of adverse drug events. We retrospectively collected EHR entries for 71 909 pediatric inpatient visits at Cincinnati Children's Hospital Medical Center. Natural language processing (NLP) techniques were used to identify positive diseases/disorders and signs/symptoms (DDSSs) from the patients' clinical narratives. We downloaded all FAERS reports submitted by medical providers and extracted the reported drug-DDSS pairs. For each patient, we aligned the drug-DDSS pairs extracted from their clinical notes with the corresponding drug-DDSS pairs from the FAERS data set to identify Drug-Reaction Pair Sentences (DRPSs). The DRPSs were processed by NLP techniques to identify ADR-related DRPSs. We used clinician annotated, real-world EHR data as reference standard to evaluate the proposed algorithm. During evaluation, the algorithm achieved promising performance and showed great potential in identifying ADRs accurately for pediatric patients.

17.
Am J Respir Crit Care Med ; 195(4): 456-463, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27611488

RESUMEN

RATIONALE: Despite significant advances in knowledge of the genetic architecture of asthma, specific contributors to the variability in the burden between populations remain uncovered. OBJECTIVES: To identify additional genetic susceptibility factors of asthma in European American and African American populations. METHODS: A phenotyping algorithm mining electronic medical records was developed and validated to recruit cases with asthma and control subjects from the Electronic Medical Records and Genomics network. Genome-wide association analyses were performed in pediatric and adult asthma cases and control subjects with European American and African American ancestry followed by metaanalysis. Nominally significant results were reanalyzed conditioning on allergy status. MEASUREMENTS AND MAIN RESULTS: The validation of the algorithm yielded an average of 95.8% positive predictive values for both cases and control subjects. The algorithm accrued 21,644 subjects (65.83% European American and 34.17% African American). We identified four novel population-specific associations with asthma after metaanalyses: loci 6p21.31, 9p21.2, and 10q21.3 in the European American population, and the PTGES gene in African Americans. TEK at 9p21.2, which encodes TIE2, has been shown to be involved in remodeling the airway wall in asthma, and the association remained significant after conditioning by allergy. PTGES, which encodes the prostaglandin E synthase, has also been linked to asthma, where deficient prostaglandin E2 synthesis has been associated with airway remodeling. CONCLUSIONS: This study adds to understanding of the genetic architecture of asthma in European Americans and African Americans and reinforces the need to study populations of diverse ethnic backgrounds to identify shared and unique genetic predictors of asthma.


Asunto(s)
Asma/genética , Negro o Afroamericano/genética , Registros Electrónicos de Salud/estadística & datos numéricos , Predisposición Genética a la Enfermedad/genética , Prostaglandina-E Sintasas/genética , Población Blanca/genética , Adolescente , Adulto , Remodelación de las Vías Aéreas (Respiratorias)/genética , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Algoritmos , Asma/etnología , Niño , Preescolar , Minería de Datos/métodos , Femenino , Predisposición Genética a la Enfermedad/etnología , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Metaanálisis como Asunto , Fenotipo , Prevalencia , Estados Unidos
18.
Int J Pediatr ; 2016: 4068582, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27698673

RESUMEN

Background and Objectives. The prevalence of severe obesity in children has doubled in the past decade. The objective of this study is to identify the clinical documentation of obesity in young children with a BMI ≥ 99th percentile at two large tertiary care pediatric hospitals. Methods. We used a standardized algorithm utilizing data from electronic health records to identify children with severe early onset obesity (BMI ≥ 99th percentile at age <6 years). We extracted descriptive terms and ICD-9 codes to evaluate documentation of obesity at Boston Children's Hospital and Cincinnati Children's Hospital and Medical Center between 2007 and 2014. Results. A total of 9887 visit records of 2588 children with severe early onset obesity were identified. Based on predefined criteria for documentation of obesity, 21.5% of children (13.5% of visits) had positive documentation, which varied by institution. Documentation in children first seen under 2 years of age was lower than in older children (15% versus 26%). Documentation was significantly higher in girls (29% versus 17%, p < 0.001), African American children (27% versus 19% in whites, p < 0.001), and the obesity focused specialty clinics (70% versus 15% in primary care and 9% in other subspecialty clinics, p < 0.001). Conclusions. There is significant opportunity for improvement in documentation of obesity in young children, even years after the 2007 AAP guidelines for management of obesity.

19.
Appl Clin Inform ; 7(3): 693-706, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27452794

RESUMEN

OBJECTIVE: The objective of this study is to develop an algorithm to accurately identify children with severe early onset childhood obesity (ages 1-5.99 years) using structured and unstructured data from the electronic health record (EHR). INTRODUCTION: Childhood obesity increases risk factors for cardiovascular morbidity and vascular disease. Accurate definition of a high precision phenotype through a standardize tool is critical to the success of large-scale genomic studies and validating rare monogenic variants causing severe early onset obesity. DATA AND METHODS: Rule based and machine learning based algorithms were developed using structured and unstructured data from two EHR databases from Boston Children's Hospital (BCH) and Cincinnati Children's Hospital and Medical Center (CCHMC). Exclusion criteria including medications or comorbid diagnoses were defined. Machine learning algorithms were developed using cross-site training and testing in addition to experimenting with natural language processing features. RESULTS: Precision was emphasized for a high fidelity cohort. The rule-based algorithm performed the best overall, 0.895 (CCHMC) and 0.770 (BCH). The best feature set for machine learning employed Unified Medical Language System (UMLS) concept unique identifiers (CUIs), ICD-9 codes, and RxNorm codes. CONCLUSIONS: Detecting severe early childhood obesity is essential for the intervention potential in children at the highest long-term risk of developing comorbidities related to obesity and excluding patients with underlying pathological and non-syndromic causes of obesity assists in developing a high-precision cohort for genetic study. Further such phenotyping efforts inform future practical application in health care environments utilizing clinical decision support.


Asunto(s)
Aprendizaje Automático , Obesidad Infantil/diagnóstico , Atención Terciaria de Salud , Niño , Preescolar , Comorbilidad , Diagnóstico Precoz , Femenino , Humanos , Lactante , Masculino , Obesidad Infantil/epidemiología
20.
PLoS One ; 11(7): e0159621, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472449

RESUMEN

OBJECTIVE: Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as International Classification of Diseases 9th edition (ICD-9) diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD. METHODS: We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children's Hospital (BCH) (N = 150) and Cincinnati Children's Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2) predictive classifier. The positive predictive values (PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups. RESULTS: The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b) CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation at Children's Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, developmental, and seizure disorder clusters. CONCLUSIONS: In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.


Asunto(s)
Algoritmos , Trastorno del Espectro Autista/diagnóstico , Registros Electrónicos de Salud , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA