Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cartilage ; 13(1): 19476035221081466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313741

RESUMEN

OBJECTIVE: Tissue-engineered cartilage implants must withstand the potential inflammatory and joint loading environment for successful long-term repair of defects. The work's objectives were to develop a novel, direct cartilage-macrophage co-culture system and to characterize interactions between self-assembled neocartilage and differentially stimulated macrophages. DESIGN: In study 1, it was hypothesized that the proinflammatory response of macrophages would intensify with increasing construct stiffness; it was expected that the neocartilage would display a decrease in mechanical properties after co-culture. In study 2, it was hypothesized that bioactive factors would protect neocartilage properties during macrophage co-culture. Also, it was hypothesized that interleukin 10 (IL-10)-stimulated macrophages would improve neocartilage mechanical properties compared to lipopolysaccharide (LPS)-stimulated macrophages. RESULTS: As hypothesized, stiffer neocartilage elicited a heightened proinflammatory macrophage response, increasing tumor necrosis factor alpha (TNF-α) secretion by 5.47 times when LPS-stimulated compared to construct-only controls. Interestingly, this response did not adversely affect construct properties for the stiffest neocartilage but did correspond to a significant decrease in aggregate modulus for soft and medium stiffness constructs. In addition, bioactive factor-treated constructs were protected from macrophage challenge compared to chondrogenic medium-treated constructs, but IL-10 did not improve neocartilage properties, although stiff constructs appeared to bolster the anti-inflammatory nature of IL-10-stimulated macrophages. However, co-culture of bioactive factor-treated constructs with LPS-treated macrophages reduced TNF-α secretion by over 4 times compared to macrophage-only controls. CONCLUSIONS: In conclusion, neocartilage stiffness can mediate macrophage behavior, but stiffness and bioactive factors prevent macrophage-induced degradation. Ultimately, this co-culture system could be utilized for additional studies to develop the burgeoning field of cartilage mechano-immunology.


Asunto(s)
Cartílago Articular , Condrocitos , Cartílago Articular/fisiología , Condrocitos/metabolismo , Técnicas de Cocultivo , Interleucina-10/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Factor de Necrosis Tumoral alfa
2.
Biomater Sci ; 9(23): 7851-7861, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34514479

RESUMEN

Evaluating the host immune response to biomaterials is an essential step in the development of medical devices and tissue engineering strategies. To aid in this process, in vitro studies, whereby immune cells such as macrophages are cultured on biomaterials, can often expedite high throughput testing of many materials prior to implantation. While most studies to date utilize murine or human cells, the use of porcine macrophages has been less well described, despite the prevalent use of porcine models in medical device and tissue engineering development. In this study, we describe the isolation and characterization of porcine bone marrow- and peripheral blood-derived macrophages, and their interactions with biomaterials. We confirmed the expression of the macrophage surface markers CD68 and F4/80 and characterized the porcine macrophage response to the inflammatory stimulus, bacterial lipopolysaccharide. Finally, we investigated the inflammatory and fusion response of porcine macrophages cultured on different stiffness hydrogels, and we found that stiffer hydrogels enhanced inflammatory activation by more than two-fold and promoted fusion to form foreign body giant cells. Together, this study establishes the use of porcine macrophages in biomaterial testing and reveals a stiffness-dependent effect on biomaterial-induced giant cell formation.


Asunto(s)
Materiales Biocompatibles , Macrófagos , Porcinos , Animales , Hidrogeles , Ensayo de Materiales , Ingeniería de Tejidos
3.
Am J Sports Med ; 49(5): 1305-1312, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667144

RESUMEN

BACKGROUND: Although the toxic effects of bupivacaine on chondrocyte monolayer culture have been well described, its cellular and mechanical effects on native and engineered articular cartilage remain unclear. For the repair of articular cartilage defects, fresh autologous and allogenic cartilage grafts are commonly used, and engineered cell-based therapies are emerging. The outcome of grafting therapies aimed at repairing damaged cartilage relies largely on maintaining proper viability and mechanical suitability of the donor tissues. PURPOSE: To investigate the in vitro effects of single bupivacaine exposure on the viability and mechanics of 2 cartilage graft types: native articular cartilage and engineered neocartilage. STUDY DESIGN: Controlled laboratory study. METHODS: Articular cartilage explants were harvested from the bovine stifle femoral condyles, and neocartilage constructs were engineered from bovine stifle chondrocytes using the self-assembling process, a scaffold-free approach to engineer cartilage tissue. Both explants and neocartilage were exposed to chondrogenic medium containing a clinically applicable bolus of 0.5%, 0.25%, or 0% (control) bupivacaine for 1 hour, followed by fresh medium wash and exchange. Cell viability and matrix content (collagen and glycosaminoglycan) were assessed at t = 24 hours after treatment, and compressive mechanical properties were assessed with creep indentation testing at t = 5 to 6 days after treatment. RESULTS: Single bupivacaine exposure was chondrotoxic in both explants and neocartilage, with 0.5% bupivacaine causing a significant decrease in chondrocyte viability compared with the control condition (55.0% ± 13.4% vs 71.9% ± 13.5%; P < .001). Bupivacaine had no significant effect on matrix content for either tissue type. There was significant weakening of the mechanical properties in the neocartilage when treated with 0.5% bupivacaine compared with control, with decreased aggregate modulus (415.8 ± 155.1 vs 660.3 ± 145.8 kPa; P = .003), decreased shear modulus (143.2 ± 14.0 vs 266.5 ± 89.2 kPa; P = .002), and increased permeability (14.7 ± 8.1 vs 6.6 ± 1.7 × 10-15 m4/Ns; P = .009). Bupivacaine exposure did not have a significant effect on the mechanical properties of native cartilage explants. CONCLUSION: Single bupivacaine exposure resulted in significant chondrotoxicity in native explants and neocartilage and significant weakening of mechanical properties of neocartilage. The presence of abundant extracellular matrix does not appear to confer any additional resistance to the toxic effects of bupivacaine. CLINICAL RELEVANCE: Clinicians should be judicious regarding the use of intra-articular bupivacaine in the setting of articular cartilage repair.


Asunto(s)
Bupivacaína , Cartílago Articular , Animales , Bovinos , Condrocitos , Condrogénesis , Articulación de la Rodilla , Ingeniería de Tejidos
4.
Cartilage ; 13(2_suppl): 672S-683S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32441107

RESUMEN

OBJECTIVE: To enhance the in vitro integration of self-assembled articular cartilage to native articular cartilage using chondroitinase ABC. DESIGN: To examine the hypothesis that chondroitinase ABC (C-ABC) integration treatment (C-ABCint) would enhance integration of neocartilage of different maturity levels, this study was conducted in 2 phases. In phase I, the impact on integration of 2 treatments, TCL (TGF-ß1, C-ABC, and lysyl oxidase like 2) and C-ABCint, was examined via a 2-factor, full factorial design. In phase II, construct maturity (2 levels) and C-ABCint concentration (3 levels) were the factors in a full factorial design to determine whether the effective C-ABCint dose was dependent on neocartilage maturity level. Neocartilages formed or treated per the factors above were placed into native cartilage rings, cultured for 2 weeks, and, then, integration was studied histologically and mechanically. Prior to integration, in phase II, a set of treated constructs were also assayed to provide a baseline of properties. RESULTS: In phase I, C-ABCint and TCL treatments synergistically enhanced interface Young's modulus by 6.2-fold (P = 0.004) and increased interface tensile strength by 3.8-fold (P = 0.02) compared with control. In phase II, the interaction of the factors C-ABCint and construct maturity was significant (P = 0.0004), indicating that the effective C-ABCint dose to improve interface Young's modulus is dependent on construct maturity. Construct mechanical properties were preserved regardless of C-ABCint dose. CONCLUSIONS: Applying C-ABCint to neocartilage is an effective integration strategy with translational potential, provided its dose is calibrated appropriately based on implant maturity, that also preserves implant biomechanical properties.


Asunto(s)
Cartílago Articular , Condrocitos , Condroitina ABC Liasa , Resistencia a la Tracción , Ingeniería de Tejidos
5.
J Equine Vet Sci ; 96: 103294, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349403

RESUMEN

A significant portion of equine lameness is localized to the stifle joint. Effective cartilage repair strategies are largely lacking, however, recent advances in surgical techniques, biomaterials, and cellular therapeutics have broadened the clinical strategies of cartilage repair. To date, no studies have been performed directly comparing neonatal and adult articular cartilage from the stifle across multiple sites. An understanding of the differences in properties between the therapeutic target cartilage (i.e., adult cartilage) as well as potential donor cartilage (i.e., neonatal cartilage) could aid in selection of optimal harvest sites within a donor joint as well as evaluation of the success of the grafted cells or tissues within the host. Given the dearth of characterization studies of the equine stifle joint, and in particular neonatal stifle cartilage, the goal of this study was to measure properties of both potential source tissue and host tissue. Articular cartilage of the distal femur and patella (P) was assessed in regards to two specific factors, age of the animal and specific site within the joint. Two age groups were considered: neonatal (<1 week) and adult (4-14 years). Cartilage samples were harvested from 17 sites across the distal femur and patella. It was hypothesized that properties would vary significantly between neonatal and adult horses as well as within age groups on a site-by-site basis. Adult thickness varied by site. With the exception of water content, there were no significant biochemical differences among sites within regions of the distal femur (condyles and trochlea) and the patella in either the adult or neonate. Neonatal cartilage had a significantly higher water content than adult. Surprisingly, biochemical measurements of cellularity did not differ significantly between neonatal and adult, however, adult cartilage had greater variance in cellularity than neonatal. Overall, there were no significant differences between neonatal and adult glycosaminoglycan content. Collagen per wet weight was found to be significantly higher in adult cartilage than neonatal when averaged across all levels. In terms of biomechanical properties, aggregate modulus varied significantly across the condyles of adult cartilage but not the neonate. Neonatal cartilage was significantly less permeable, and the Young's modulus of neonatal cartilage was significantly higher than the adult. The tensile strength did not vary in a statistically significant manner between age groups. An understanding of morphological, histological, biochemical, and biomechanical properties enhances the understanding of cartilage tissue physiology and structure-function relationships. This study revealed important differences in biomechanical and biochemical properties among the 17 sites and among the six joint regions, as well as age-related differences between neonatal and adult cartilage. These location and age-related variations are informative toward determining the donor tissue harvest site.


Asunto(s)
Cartílago Articular , Animales , Fémur/diagnóstico por imagen , Glicosaminoglicanos , Caballos , Articulación de la Rodilla , Rodilla de Cuadrúpedos/cirugía
6.
Clin Biomech (Bristol, Avon) ; 79: 104880, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31676140

RESUMEN

Diarthrodial joints, found at the ends of long bones, function to dissipate load and allow for effortless articulation. Essential to these functions are cartilages, soft hydrated tissues such as hyaline articular cartilage and the knee meniscus, as well as lubricating synovial fluid. Maintaining adequate lubrication protects cartilages from wear, but a decrease in this function leads to tissue degeneration and pathologies such as osteoarthritis. To study cartilage physiology, articular cartilage researchers have employed tribology, the study of lubrication and wear between two opposing surfaces, to characterize both native and engineered tissues. The biochemical components of synovial fluid allow it to function as an effective lubricant that exhibits shear-thinning behavior. Although tribological properties are recognized to be essential to native tissue function and a critical characteristic for translational tissue engineering, tribology is vastly understudied when compared to other mechanical properties such as compressive moduli. Further, tribometer configurations and testing modalities vary greatly across laboratories. This review aims to define commonly examined tribological characteristics and discuss the structure-function relationships of biochemical constituents known to contribute to tribological properties in native tissue, address the variations in experimental set-ups by suggesting a move toward standard testing practices, and describe how tissue-engineered cartilages may be augmented to improve their tribological properties.


Asunto(s)
Cartílago Articular/citología , Fenómenos Mecánicos , Ingeniería de Tejidos/métodos , Animales , Fenómenos Biomecánicos , Cartílago Articular/fisiología , Humanos
7.
Biotechnol J ; 14(3): e1700763, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30052320

RESUMEN

Lysyl oxidase (LOX)-mediated collagen crosslinking can regulate osteoblastic phenotype and enhance mechanical properties of tissues, both areas of interest in bone tissue engineering. The objective of this study is to investigate the effect of lysyl oxidase-like 2 (LOXL2) on osteogenic differentiation of mesenchymal stem cells (MSCs) cultured in perfusion bioreactors, enzymatic collagen crosslink formation in the extracellular matrix (ECM), and mechanical properties of engineered bone grafts. Exogenous LOXL2 to MSCs seeded in composite scaffolds under perfusion culture for up to 28 days is administered. Constructs treated with LOXL2 appear brown in color and possess greater DNA content and osteogenic potential measured by a twofold increase in bone sialoprotein gene expression. Collagen expression of LOXL2-treated scaffolds is lower than untreated controls. Functional outputs such as calcium deposition, osteocalcin expression, and compressive modulus are unaffected by LOXL2 supplementation. Excitingly, LOXL2-treated constructs contain 1.8- and 1.4-times more pyridinoline (PYD) crosslinks per mole of collagen and per wet weight, respectively, than untreated constructs. Despite these increases, compressive moduli of LOXL2-treated constructs are similar to untreated constructs over the 28-day culture duration. This is the first report of LOXL2 application to engineered, three-dimensional bony constructs. The results suggest a potentially new strategy for engineering osteogenic grafts with a mature ECM by modulating crosslink formation.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Colágeno/metabolismo , Osteogénesis/fisiología , Aminoácidos/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido
8.
Annu Rev Biomed Eng ; 20: 145-170, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29494214

RESUMEN

The zygapophysial joint, a diarthrodial joint commonly referred to as the facet joint, plays a pivotal role in back pain, a condition that has been a leading cause of global disability since 1990. Along with the intervertebral disc, the facet joint supports spinal motion and aids in spinal stability. Highly susceptible to early development of osteoarthritis, the facet is responsible for a significant amount of pain in the low-back, mid-back, and neck regions. Current noninvasive treatments cannot offer long-term pain relief, while invasive treatments can relieve pain but fail to preserve joint functionality. This review presents an overview of the facet in terms of its anatomy, functional properties, problems, and current management strategies. Furthermore, this review introduces the potential for regeneration of the facet and particular engineering strategies that could be employed as a long-term treatment.


Asunto(s)
Osteoartritis/fisiopatología , Regeneración , Columna Vertebral/fisiopatología , Articulación Cigapofisaria/fisiopatología , Animales , Dolor de Espalda/fisiopatología , Cartílago Articular/fisiopatología , Comorbilidad , Humanos , Inyecciones Intraarticulares , Rodilla/anatomía & histología , Terminaciones Nerviosas , Ortopedia , Escoliosis/complicaciones , Estenosis Espinal/complicaciones , Columna Vertebral/fisiología , Espondilolistesis/complicaciones , Membrana Sinovial/patología , Articulación Cigapofisaria/anatomía & histología , Articulación Cigapofisaria/cirugía
9.
Tissue Eng Part C Methods ; 23(4): 243-250, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28406755

RESUMEN

Collagen quantification has long been relevant to biomedical research and clinical practice to characterize tissues and determine disease states. The hydroxyproline assay, while a broadly employed method of quantifying collagen, uses perchloric acid to dissolve Ehrlich's reagent. Since perchloric acid poses occupational safety hazards and high costs, in this study, a new hydroxyproline assay was developed that replaces perchloric acid with a relatively safer and cheaper alternative, hydrochloric acid (HCl). To validate this biochemical technique, first, using either acid to dissolve Ehrlich's reagent, the assays were completed for native and engineered collagenous tissues. No statistical differences were identified between the assays (p = 0.32). Subsequently, both biochemical techniques were compared to amino acid analysis, considered a proteomics gold standard. Interestingly, utilizing HCl in lieu of perchloric acid yielded greater concordance with amino acid analysis (ρc = 0.980) than did the traditional assay (ρc = 0.947); that is, the HCl-based assay more closely estimates hydroxyproline content, and, consequently, true collagen content. Thus, using Ehrlich's reagent containing HCl in the hydroxyproline assay represents an advance in both mitigating laboratory safety hazards and improving biochemical collagen quantification.


Asunto(s)
Benzaldehídos/química , Colágeno/química , Ácido Clorhídrico/química , Hidroxiprolina/análisis , Animales , Bovinos
10.
Acta Biomater ; 54: 367-376, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28300721

RESUMEN

The facet joint, a synovial joint located on the posterior-lateral spine, is highly susceptible to degenerative changes and plays a significant role in back-related morbidities. Despite its significance, the facet is rarely studied and thus current treatment strategies are lacking. This study aimed to characterize, for the first time, the properties of human, pig, monkey, and rabbit lumbar facet cartilage providing much-needed design criteria for tissue engineering approaches. In this study, where possible, the facet's morphological, histological, mechanical, and biochemical properties were evaluated. Comparisons between the properties of the inferior and superior facet surfaces, as well as among spinal levels were performed within each species. In addition, interspecies comparisons of the properties were determined. The human facet joint was found to be degenerated; 100% of joint surfaces showed signs of pathology and approximately 71% of these were considered to be grade 4. Joint morphology varied among species, demonstrating that despite the mini-pig facet being closest to the human in terms of width and length, it was far more curved than the human or any of the other species. No notable differences were found in the mini-pig, monkey, and rabbit mechanical and biochemical properties, suggesting that these species, despite morphological differences, may serve as suitable animal models for studying structure-function relationships of the human facet joint. The characterization data reported in this study may increase our understanding of this ill-described joint as well as provide the foundation for the development of new treatments such as tissue engineering. STATEMENT OF SIGNIFICANCE: This work provides the first comprehensive description of the properties of lumbar facet joint cartilage. Importantly, this work establishes that histological, biochemical, and mechanical properties are comparable between bipedal and quadrupedal animals, helping to guide future selection of appropriate animal models. This work also suggests that the human facet joint is highly susceptible to pathology. The mechanical properties of facet cartilage, found to be inferior to those of other synovial joints, provide a greater understanding of the joint's structure-function relationships as well as the potential etiology of facet joint pathology. Lastly, this work will serve as the foundation for the development of much-needed facet joint treatments, especially those based on tissue engineering approaches.


Asunto(s)
Cartílago/química , Articulación Cigapofisaria/química , Animales , Cartílago/patología , Femenino , Humanos , Macaca mulatta , Masculino , Conejos , Especificidad de la Especie , Porcinos , Articulación Cigapofisaria/patología
11.
Artículo en Inglés | MEDLINE | ID: mdl-28348174

RESUMEN

Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This review will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue-engineering developments. We aim to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods toward generating functional tissue replacements.


Asunto(s)
Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Materiales Biomiméticos , Técnicas de Cultivo de Célula , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Humanos , Andamios del Tejido
12.
Biomaterials ; 35(22): 5921-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24767790

RESUMEN

The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.


Asunto(s)
Cartílago/fisiología , Condrogénesis , Ingeniería de Tejidos/métodos , Cartílago/inmunología , Cartílago/metabolismo , Células Cultivadas , Terapia Genética , Humanos , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-1/inmunología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/terapia , Andamios del Tejido/química , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...