Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37174066

RESUMEN

Extracellular vesicles (EVs) have emerged as pivotal mediators of communication in the tumour microenvironment. More specifically, nanosized extracellular vesicles termed exosomes have been shown to contribute to the establishment of a premetastatic niche. Here, we sought to determine what role exosomes play in medulloblastoma (MB) progression and elucidate the underlying mechanisms. Metastatic MB cells (D458 and CHLA-01R) were found to secrete markedly more exosomes compared to their nonmetastatic, primary counterparts (D425 and CHLA-01). In addition, metastatic cell-derived exosomes significantly enhanced the migration and invasiveness of primary MB cells in transwell migration assays. Protease microarray analysis identified that matrix metalloproteinase-2 (MMP-2) was enriched in metastatic cells, and zymography and flow cytometry assays of metastatic exosomes demonstrated higher levels of functionally active MMP-2 on their external surface. Stable genetic knockdown of MMP-2 or extracellular matrix metalloproteinase inducer (EMMPRIN) in metastatic MB cells resulted in the loss of this promigratory effect. Analysis of serial patient cerebrospinal fluid (CSF) samples showed an increase in MMP-2 activity in three out of four patients as the tumour progressed. This study demonstrates the importance of EMMPRIN and MMP-2-associated exosomes in creating a favourable environment to drive medulloblastoma metastasis via extracellular matrix signalling.

2.
Acta Neuropathol Commun ; 11(1): 6, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631900

RESUMEN

The most common malignant brain tumour in children, medulloblastoma (MB), is subdivided into four clinically relevant molecular subgroups, although targeted therapy options informed by understanding of different cellular features are lacking. Here, by comparing the most aggressive subgroup (Group 3) with the intermediate (SHH) subgroup, we identify crucial differences in tumour heterogeneity, including unique metabolism-driven subpopulations in Group 3 and matrix-producing subpopulations in SHH. To analyse tumour heterogeneity, we profiled individual tumour nodules at the cellular level in 3D MB hydrogel models, which recapitulate subgroup specific phenotypes, by single cell RNA sequencing (scRNAseq) and 3D OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) imaging. In addition to identifying known metabolites characteristic of MB, we observed intra- and internodular heterogeneity and identified subgroup-specific tumour subpopulations. We showed that extracellular matrix factors and adhesion pathways defined unique SHH subpopulations, and made up a distinct shell-like structure of sulphur-containing species, comprising a combination of small leucine-rich proteoglycans (SLRPs) including the collagen organiser lumican. In contrast, the Group 3 tumour model was characterized by multiple subpopulations with greatly enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle activity. Extensive TCA cycle metabolite measurements revealed very high levels of succinate and fumarate with malate levels almost undetectable particularly in Group 3 tumour models. In patients, high fumarate levels (NMR spectroscopy) alongside activated stress response pathways and high Nuclear Factor Erythroid 2-Related Factor 2 (NRF2; gene expression analyses) were associated with poorer survival. Based on these findings we predicted and confirmed that NRF2 inhibition increased sensitivity to vincristine in a long-term 3D drug treatment assay of Group 3 MB. Thus, by combining scRNAseq and 3D OrbiSIMS in a relevant model system we were able to define MB subgroup heterogeneity at the single cell level and elucidate new druggable biomarkers for aggressive Group 3 and low-risk SHH MB.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Cerebelosas , Proteínas Hedgehog , Meduloblastoma , Humanos , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Proteínas Hedgehog/metabolismo , Hidrogeles/uso terapéutico , Meduloblastoma/metabolismo , Meduloblastoma/patología , Factor 2 Relacionado con NF-E2 , Análisis de la Célula Individual , RNA-Seq
3.
Neurooncol Adv ; 3(1): vdab030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33948561

RESUMEN

BACKGROUND: Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. METHODS: A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. RESULTS: Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). CONCLUSIONS: In this study, we identified a TWIST1-ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.

4.
Sci Rep ; 11(1): 4259, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608621

RESUMEN

Studying medulloblastoma, the most common malignant paediatric brain tumour, requires simple yet realistic in vitro models. In this study, we optimised a robust, reliable, three-dimensional (3D) culture method for medulloblastoma able to recapitulate the spatial conformation, cell-cell and cell-matrix interactions that exist in vivo and in patient tumours. We show that, when grown under the same stem cell enriching conditions, SHH subgroup medulloblastoma cell lines established tight, highly reproducible 3D spheroids that could be maintained for weeks in culture and formed pathophysiological oxygen gradients. 3D spheroid culture also increased resistance to standard-of-care chemotherapeutic drugs compared to 2D monolayer culture. We exemplify how this model can enhance in vitro therapeutic screening approaches through dual-inhibitor studies and continual monitoring of drug response. Next, we investigated the initial stages of metastatic dissemination using brain-specific hyaluronan hydrogel matrices. RNA sequencing revealed downregulation of cell cycle genes and upregulation of cell movement genes and key fibronectin interactions in migrating cells. Analyses of these upregulated genes in patients showed that their expression correlated with early relapse and overall poor prognosis. Our 3D spheroid model is a significant improvement over current in vitro techniques, providing the medulloblastoma research community with a well-characterised and functionally relevant culture method.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Biomarcadores de Tumor , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/etiología , Meduloblastoma/mortalidad , Pronóstico , Células Tumorales Cultivadas
6.
J Pathol ; 253(3): 326-338, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33206391

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumour in children and is subdivided into four subgroups: WNT, SHH, Group 3, and Group 4. These molecular subgroups differ in their metastasis patterns and related prognosis rates. Conventional 2D cell culture methods fail to recapitulate these clinical differences. Realistic 3D models of the cerebellum are therefore necessary to investigate subgroup-specific functional differences and their role in metastasis and chemoresistance. A major component of the brain extracellular matrix (ECM) is the glycosaminoglycan hyaluronan. MB cell lines encapsulated in hyaluronan hydrogels grew as tumour nodules, with Group 3 and Group 4 cell lines displaying clinically characteristic laminar metastatic patterns and levels of chemoresistance. The glycoproteins, laminin and vitronectin, were identified as subgroup-specific, tumour-secreted ECM factors. Gels of higher complexity, formed by incorporation of laminin or vitronectin, revealed subgroup-specific adhesion and growth patterns closely mimicking clinical phenotypes. ECM subtypes, defined by relative levels of laminin and vitronectin expression in patient tissue microarrays and gene expression data sets, were able to identify novel high-risk MB patient subgroups and predict overall survival. Our hyaluronan model system has therefore allowed us to functionally characterize the interaction between different MB subtypes and their environment. It highlights the prognostic and pathological role of specific ECM factors and enables preclinical development of subgroup-specific therapies. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Cerebelosas/patología , Matriz Extracelular/patología , Hidrogeles , Meduloblastoma/patología , Modelos Anatómicos , Línea Celular Tumoral , Humanos
7.
Mol Oncol ; 14(3): 571-589, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31825135

RESUMEN

Macrophages (Mφ) are abundantly present in the tumor microenvironment and may predict outcome in solid tumors and defined lymphoma subtypes. Mφ heterogeneity, the mechanisms of their recruitment, and their differentiation into lymphoma-promoting, alternatively activated M2-like phenotypes are still not fully understood. Therefore, further functional studies are required to understand biological mechanisms associated with human tumor-associated Mφ (TAM). Here, we show that the global mRNA expression and protein abundance of human Mφ differentiated in Hodgkin lymphoma (HL)-conditioned medium (CM) differ from those of Mφ educated by conditioned media from diffuse large B-cell lymphoma (DLBCL) cells or, classically, by macrophage colony-stimulating factor (M-CSF). Conditioned media from HL cells support TAM differentiation through upregulation of surface antigens such as CD40, CD163, CD206, and PD-L1. In particular, RNA and cell surface protein expression of mannose receptor 1 (MRC1)/CD206 significantly exceed the levels induced by classical M-CSF stimulation in M2-like Mφ; this is regulated by interleukin 13 to a large extent. Functionally, high CD206 enhances mannose-dependent endocytosis and uptake of type I collagen. Together with high matrix metalloprotease9 secretion, HL-TAMs appear to be active modulators of the tumor matrix. Preclinical in ovo models show that co-cultures of HL cells with monocytes or Mφ support dissemination of lymphoma cells via lymphatic vessels, while tumor size and vessel destruction are decreased in comparison with lymphoma-only tumors. Immunohistology of human HL tissues reveals a fraction of cases feature large numbers of CD206-positive cells, with high MRC1 expression being characteristic of HL-stage IV. In summary, the lymphoma-TAM interaction contributes to matrix-remodeling and lymphoma cell dissemination.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Enfermedad de Hodgkin/metabolismo , Linfoma de Células B/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Microambiente Tumoral , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno B7-H1/metabolismo , Antígenos CD40/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Embrión de Pollo , Membrana Corioalantoides/metabolismo , Membrana Corioalantoides/patología , Colágeno Tipo I/metabolismo , Medios de Cultivo Condicionados/metabolismo , Técnica del Anticuerpo Fluorescente , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/patología , Humanos , Interleucina-13/metabolismo , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/inmunología , Monocitos/metabolismo , Metástasis de la Neoplasia/inmunología , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/inmunología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...