Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 58(49): 4935-4949, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31713418

RESUMEN

The acquisition of iron is essential to establishing virulence among most pathogens. Under acidic and/or anaerobic conditions, most bacteria utilize the widely distributed ferrous iron (Fe2+) uptake (Feo) system to import metabolically-required iron. The Feo system is inadequately understood at the atomic, molecular, and mechanistic levels, but we do know it is composed of a main membrane component (FeoB) essential for iron translocation, as well as two small, cytosolic proteins (FeoA and FeoC) hypothesized to function as accessories to this process. FeoC has many hypothetical functions, including that of an iron-responsive transcriptional regulator. Here, we demonstrate for the first time that Escherichia coli FeoC (EcFeoC) binds an [Fe-S] cluster. Using electronic absorption, X-ray absorption, and electron paramagnetic resonance spectroscopies, we extensively characterize the nature of this cluster. Under strictly anaerobic conditions after chemical reconstitution, we demonstrate that EcFeoC binds a redox-active [4Fe-4S]2+/+ cluster that is rapidly oxygen-sensitive and decays to a [2Fe-2S]2+ cluster (t1/2 ≈ 20 s), similar to the [Fe-S] cluster in the fumarate and nitrate reductase (FNR) transcriptional regulator. We further show that this behavior is nearly identical to the homologous K. pneumoniae FeoC, suggesting a redox-active, oxygen-sensitive [4Fe-4S]2+ cofactor is a general phenomenon of cluster-binding FeoCs. Finally, in contrast to FNR, we show that the [4Fe-4S]2+ cluster binding to FeoC is associated with modest conformational changes of the polypeptide, but not protein dimerization. We thus posit a working hypothesis in which the cluster-binding FeoCs may function as oxygen-sensitive iron sensors that fine-tune pathogenic ferrous iron acquisition.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/química , Oxígeno/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hierro/química , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cinética , Oxidación-Reducción , Oxígeno/química , Proteínas Represoras/genética , Azufre/química , Azufre/metabolismo
2.
Proteins ; 87(11): 897-903, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31162843

RESUMEN

In order to establish infection, pathogenic bacteria must obtain essential nutrients such as iron. Under acidic and/or anaerobic conditions, most bacteria utilize the Feo system in order to acquire ferrous iron (Fe2+ ) from their host environment. The mechanism of this process, including its regulation, remains poorly understood. In this work, we have determined the crystal structure of FeoA from the nosocomial agent Klebsiella pneumoniae (KpFeoA). Our structure reveals an SH3-like domain that mediates interactions between neighboring polypeptides via hydrophobic intercalations into a Leu-rich surface ridge. Using docking of a small peptide corresponding to a postulated FeoB partner binding site, we demonstrate that KpFeoA can assume both "open" and "closed" conformations, controlled by binding at this Leu-rich ridge. We propose a model in which a "C-shaped" clamp along the FeoA surface mediates interactions with its partner protein, FeoB. These findings are the first to demonstrate atomic-level details of FeoA-based protein-protein interactions and provide a framework for testing FeoA-FeoB interactions, which could be exploited for future antibiotic developments.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión a Hierro/química , Klebsiella pneumoniae/patogenicidad , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Unión a Hierro/metabolismo , Infecciones por Klebsiella/microbiología , Simulación del Acoplamiento Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas
3.
Metallomics ; 10(7): 887-898, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29953152

RESUMEN

Virtually all organisms require iron and have evolved to obtain this element in free or chelated forms. Under anaerobic or low pH conditions commonly encountered by numerous pathogens, iron predominantly exists in the ferrous (Fe2+) form. The ferrous iron transport (Feo) system is the only widespread mechanism dedicated solely to bacterial ferrous iron import, and this system has been linked to pathogenic virulence, bacterial colonization, and microbial survival. The canonical feo operon encodes for three proteins that comprise the Feo system: FeoA, a small cytoplasmic ß-barrel protein; FeoB, a large, polytopic membrane protein with a soluble G-protein domain capable of hydrolyzing GTP; and FeoC, a small, cytoplasmic protein containing a winged-helix motif. While previous studies have revealed insight into soluble and fragmentary domains of the Feo system, the chief membrane-bound component FeoB remains poorly studied. However, recent advances have demonstrated that large quantities of intact FeoB can be overexpressed, purified, and biophysically characterized, revealing glimpses into FeoB function. Two models of full-length FeoB have been published, providing starting points for hypothesis-driven investigations into the mechanism of FeoB-mediated ferrous iron transport. Finally, in vivo studies have begun to shed light on how this system functions as a unique multicomponent complex. In light of these new data, this review will summarize what is known about the Feo system, including recent advancements in FeoB structure and function.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Compuestos Ferrosos/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Virulencia , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Transporte Iónico , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Operón , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA