Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(6): e0017024, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38738930

RESUMEN

A Histophilus somni isolate from a clinically healthy, fall-placed calf was obtained upon arrival to a commercial feedlot. Fall-placed calves are commonly viewed to be at high risk for the development of bovine respiratory disease. The isolate was phenotyped for antimicrobial susceptibility and sequenced to obtain a complete, circular, genome assembly.

2.
Front Microbiol ; 15: 1386319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779502

RESUMEN

Introduction: Bovine respiratory disease (BRD) is one of the most important animal health problems in the beef industry. While bacterial culture and antimicrobial susceptibility testing have been used for diagnostic testing, the common practice of examining one isolate per species does not fully reflect the bacterial population in the sample. In contrast, a recent study with metagenomic sequencing of nasal swabs from feedlot cattle is promising in terms of bacterial pathogen identification and detection of antimicrobial resistance genes (ARGs). However, the sensitivity of metagenomic sequencing was impeded by the high proportion of host biomass in the nasal swab samples. Methods: This pilot study employed a non-selective bacterial enrichment step before nucleic acid extraction to increase the relative proportion of bacterial DNA for sequencing. Results: Non-selective bacterial enrichment increased the proportion of bacteria relative to host sequence data, allowing increased detection of BRD pathogens compared with unenriched samples. This process also allowed for enhanced detection of ARGs with species-level resolution, including detection of ARGs for bacterial species of interest that were not targeted for culture and susceptibility testing. The long-read sequencing approach enabled ARG detection on individual bacterial reads without the need for assembly. Metagenomics following non-selective bacterial enrichment resulted in substantial agreement for four of six comparisons with culture for respiratory bacteria and substantial or better correlation with qPCR. Comparison between isolate susceptibility results and detection of ARGs was best for macrolide ARGs in Mannheimia haemolytica reads but was also substantial for sulfonamide ARGs within M. haemolytica and Pasteurella multocida reads and tetracycline ARGs in Histophilus somni reads. Discussion: By increasing the proportion of bacterial DNA relative to host DNA through non-selective enrichment, we demonstrated a corresponding increase in the proportion of sequencing data identifying BRD-associated pathogens and ARGs in deep nasopharyngeal swabs from feedlot cattle using long-read metagenomic sequencing. This method shows promise as a detection strategy for BRD pathogens and ARGs and strikes a balance between processing time, input costs, and generation of on-target data. This approach could serve as a valuable tool to inform antimicrobial management for BRD and support antimicrobial stewardship.

3.
Front Cell Infect Microbiol ; 13: 1144254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065202

RESUMEN

Birth mode has been implicated as a major factor influencing neonatal gut microbiome development, and it has been assumed that lack of exposure to the maternal vaginal microbiome is responsible for gut dysbiosis among caesarean-delivered infants. Consequently, practices to correct dysbiotic gut microbiomes, such as vaginal seeding, have arisen while the effect of the maternal vaginal microbiome on that of the infant gut remains unknown. We conducted a longitudinal, prospective cohort study of 621 Canadian pregnant women and their newborn infants and collected pre-delivery maternal vaginal swabs and infant stool samples at 10-days and 3-months of life. Using cpn60-based amplicon sequencing, we defined vaginal and stool microbiome profiles and evaluated the effect of maternal vaginal microbiome composition and various clinical variables on the development of the infant stool microbiome. Infant stool microbiomes showed significant differences in composition by delivery mode at 10-days postpartum; however, this effect could not be explained by maternal vaginal microbiome composition and was vastly reduced by 3 months. Vaginal microbiome clusters were distributed across infant stool clusters in proportion to their frequency in the overall maternal population, indicating independence of the two communities. Intrapartum antibiotic administration was identified as a confounder of infant stool microbiome differences and was associated with lower abundances of Escherichia coli, Bacteroides vulgatus, Bifidobacterium longum and Parabacteroides distasonis. Our findings demonstrate that maternal vaginal microbiome composition at delivery does not affect infant stool microbiome composition and development, suggesting that practices to amend infant stool microbiome composition focus factors other than maternal vaginal microbes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Recién Nacido , Humanos , Lactante , Embarazo , Femenino , Microbioma Gastrointestinal/genética , Estudios Prospectivos , Canadá , Heces/microbiología
4.
BMC Vet Res ; 18(1): 211, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655189

RESUMEN

BACKGROUND: Bovine respiratory disease (BRD) is an important cause of morbidity and mortality and is responsible for most of the injectable antimicrobial use in the feedlot industry. Traditional bacterial culture can be used to diagnose BRD by confirming the presence of causative pathogens and to support antimicrobial selection. However, given that bacterial culture takes up to a week and early intervention is critical for treatment success, culture has limited utility for informing rapid therapeutic decision-making. In contrast, metagenomic sequencing has the potential to quickly resolve all nucleic acid in a sample, including pathogen biomarkers and antimicrobial resistance genes. In particular, third-generation Oxford Nanopore Technology sequencing platforms provide long reads and access to raw sequencing data in real-time as it is produced, thereby reducing the time from sample collection to diagnostic answer. The purpose of this study was to compare the performance of nanopore metagenomic sequencing to traditional culture and sensitivity methods as applied to nasopharyngeal samples from segregated groups of chronically ill feedlot cattle, previously treated with antimicrobials for nonresponsive pneumonia or lameness. RESULTS: BRD pathogens were isolated from most samples and a variety of different resistance profiles were observed across isolates. The sequencing data indicated the samples were dominated by Moraxella bovoculi, Mannheimia haemolytica, Mycoplasma dispar, and Pasteurella multocida, and included a wide range of antimicrobial resistance genes (ARGs), encoding resistance for up to seven classes of antimicrobials. Genes conferring resistance to beta-lactams were the most commonly detected, while the tetH gene was detected in the most samples overall. Metagenomic sequencing detected the BRD pathogens of interest more often than did culture, but there was limited concordance between phenotypic resistance to antimicrobials and the presence of relevant ARGs. CONCLUSIONS: Metagenomic sequencing can reduce the time from sampling to results, detect pathogens missed by bacterial culture, and identify genetically encoded determinants of resistance. Increasing sequencing coverage of target organisms will be an essential component of improving the reliability of this technology, such that it can be better used for the surveillance of pathogens of interest, genetic determinants of resistance, and to inform diagnostic decisions.


Asunto(s)
Antiinfecciosos , Enfermedades de los Bovinos , Animales , Antibacterianos/farmacología , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , Enfermedad Crónica , Farmacorresistencia Bacteriana/genética , Reproducibilidad de los Resultados
5.
Microorganisms ; 9(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924343

RESUMEN

BACKGROUND: The molecular profiling of complex microbial communities has become the basis for examining the relationship between the microbiome composition, structure and metabolic functions of those communities. Microbial community structure can be partially assessed with "universal" PCR targeting taxonomic or functional gene markers. Increasingly, shotgun metagenomic DNA sequencing is providing more quantitative insight into microbiomes. However, both amplicon-based and shotgun sequencing approaches have shortcomings that limit the ability to study microbiome dynamics. METHODS: We present a novel, amplicon-free, hybridization-based method (CaptureSeq) for profiling complex microbial communities using probes based on the chaperonin-60 gene. Molecular profiles of a commercially available synthetic microbial community standard were compared using CaptureSeq, whole metagenome sequencing, and 16S universal target amplification. Profiles were also generated for natural ecosystems including antibiotic-amended soils, manure storage tanks, and an agricultural reservoir. RESULTS: The CaptureSeq method generated a microbial profile that encompassed all of the bacteria and eukaryotes in the panel with greater reproducibility and more accurate representation of high G/C content microorganisms compared to 16S amplification. In the natural ecosystems, CaptureSeq provided a much greater depth of coverage and sensitivity of detection compared to shotgun sequencing without prior selection. The resulting community profiles provided quantitatively reliable information about all three domains of life (Bacteria, Archaea, and Eukarya) in the different ecosystems. The applications of CaptureSeq will facilitate accurate studies of host-microbiome interactions for environmental, crop, animal and human health. CONCLUSIONS: cpn60-based hybridization enriched for taxonomically informative DNA sequences from complex mixtures. In synthetic and natural microbial ecosystems, CaptureSeq provided sequences from prokaryotes and eukaryotes simultaneously, with quantitatively reliable read abundances. CaptureSeq provides an alternative to PCR amplification of taxonomic markers with deep community coverage while minimizing amplification biases.

6.
BMC Bioinformatics ; 20(Suppl 15): 535, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874612

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a major threat to global public health because it makes standard treatments ineffective and contributes to the spread of infections. It is important to understand AMR's biological mechanisms for the development of new drugs and more rapid and accurate clinical diagnostics. The increasing availability of whole-genome SNP (single nucleotide polymorphism) information, obtained from whole-genome sequence data, along with AMR profiles provides an opportunity to use feature selection in machine learning to find AMR-associated mutations. This work describes the use of a supervised feature selection approach using deep neural networks to detect AMR-associated genetic factors from whole-genome SNP data. RESULTS: The proposed method, DNP-AAP (deep neural pursuit - average activation potential), was tested on a Neisseria gonorrhoeae dataset with paired whole-genome sequence data and resistance profiles to five commonly used antibiotics including penicillin, tetracycline, azithromycin, ciprofloxacin, and cefixime. The results show that DNP-AAP can effectively identify known AMR-associated genes in N. gonorrhoeae, and also provide a list of candidate genomic features (SNPs) that might lead to the discovery of novel AMR determinants. Logistic regression classifiers were built with the identified SNPs and the prediction AUCs (area under the curve) for penicillin, tetracycline, azithromycin, ciprofloxacin, and cefixime were 0.974, 0.969, 0.949, 0.994, and 0.976, respectively. CONCLUSIONS: DNP-AAP can effectively identify known AMR-associated genes in N. gonorrhoeae. It also provides a list of candidate genes and intergenic regions that might lead to novel AMR factor discovery. More generally, DNP-AAP can be applied to AMR analysis of any bacterial species with genomic variants and phenotype data. It can serve as a useful screening tool for microbiologists to generate genetic candidates for further lab experiments.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Secuenciación Completa del Genoma , Genómica , Humanos , Neisseria gonorrhoeae/efectos de los fármacos
7.
Front Microbiol ; 10: 3007, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010086

RESUMEN

Modifying the rhizosphere microbiome through targeted plant breeding is key to harnessing positive plant-microbial interrelationships in cropping agroecosystems. Here, we examine the composition of rhizosphere bacterial communities of diverse Brassica napus genotypes to identify: (1) taxa that preferentially associate with genotypes, (2) core bacterial microbiota associated with B. napus, (3) heritable alpha diversity measures at flowering and whole growing season, and (4) correlation between microbial and plant genetic distance among canola genotypes at different growth stages. Our aim is to identify and describe signature microbiota with potential positive benefits that could be integrated in B. napus breeding and management strategies. Rhizosphere soils of 16 diverse genotypes sampled weekly over a 10-week period at single location as well as at three time points at two additional locations were analyzed using 16S rRNA gene amplicon sequencing. The B. napus rhizosphere microbiome was characterized by diverse bacterial communities with 32 named bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, and Acidobacteria. Overall microbial and plant genetic distances were highly correlated (R = 0.65). Alpha diversity heritability estimates were between 0.16 and 0.41 when evaluated across growth stage and between 0.24 and 0.59 at flowering. Compared with a reference B. napus genotype, a total of 81 genera were significantly more abundant and 71 were significantly less abundant in at least one B. napus genotype out of the total 558 bacterial genera. Most differentially abundant genera were Proteobacteria and Actinobacteria followed by Bacteroidetes and Firmicutes. Here, we also show that B. napus genotypes select an overall core bacterial microbiome with growth-stage-related patterns as to how taxa joined the core membership. In addition, we report that sets of B. napus core taxa were consistent across our three sites and 2 years. Both differential abundance and core analysis implicate numerous bacteria that have been reported to have beneficial effects on plant growth including disease suppression, antifungal properties, and plant growth promotion. Using a multi-site year, temporally intensive field sampling approach, we showed that small plant genetic differences cause predictable changes in canola microbiome and are potential target for direct and indirect selection within breeding programs.

8.
PLoS One ; 12(3): e0173495, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257512

RESUMEN

We examined the epiphytic microbiome of cereal grain using the universal barcode chaperonin-60 (cpn60). Microbial community profiling of seed washes containing DNA extracts prepared from field-grown cereal grain detected sequences from a fungus identified only to Class Sordariomycetes. To identify the fungal sequence and to improve the reference database, we determined cpn60 sequences from field-collected and reference strains of the ergot fungus, Claviceps purpurea. These data allowed us to identify this fungal sequence as deriving from C. purpurea, and suggested that C. purpurea DNA is readily detectable on agricultural commodities, including those for which ergot was not identified as a grading factor. To get a sense of the prevalence and level of C. purpurea DNA in cereal grains, we developed a quantitative PCR assay based on the fungal internal transcribed spacer (ITS) and applied it to 137 samples from the 2014 crop year. The amount of Claviceps DNA quantified correlated strongly with the proportion of ergot sclerotia identified in each grain lot, although there was evidence that non-target organisms were responsible for some false positives with the ITS-based assay. We therefore developed a cpn60-targeted loop-mediated isothermal amplification assay and applied it to the same grain wash samples. The time to positive displayed a significant, inverse correlation to ergot levels determined by visual ratings. These results indicate that both laboratory-based and field-adaptable molecular diagnostic assays can be used to detect and quantify pathogen load in bulk commodities using cereal grain washes.


Asunto(s)
Chaperoninas/genética , Claviceps/aislamiento & purificación , Grano Comestible/microbiología , Claviceps/clasificación , Claviceps/patogenicidad , Código de Barras del ADN Taxonómico , Grano Comestible/genética , Semillas/genética , Semillas/microbiología
9.
J Biotechnol ; 231: 9-15, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27212608

RESUMEN

Microorganisms indigenous to an oil reservoir were grown in media containing either sucrose or proteins in four steel vessels under anoxic conditions at 30°C and 8.3MPa for 30days, to enrich biosurfactant producers. Fermentation of substrate was possible in the protein-containing medium and either fermentation or respiration through reduction of sulfate occurred in the sucrose-containing medium. Growth of microorganisms led to 3.4-5.4-fold surface tension reduction indicating production of biosurfactants in amounts sufficient for enhancement of gas-driven oil recovery. Analysis of sequenced cpn60 amplicons showed that Pseudomonas sp. highly similar to biosurfactant producing P. fluorescens and to Pseudomonas sp. strain TKP predominated, and a bacterium highly similar to biosurfactant producing Bacillus mojavensis was present in vessels. Analysis of 16S rDNA amplicons allowed only genus-level identification of these bacteria. Thus, cpn60-amplicon analysis was a more relevant tool for identification of putative biosurfactant producers than 16S rDNA-amplicon analysis.


Asunto(s)
Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Yacimiento de Petróleo y Gas/microbiología , Tensoactivos/química , Tensoactivos/metabolismo , Arcobacter/genética , Bacillus/genética , Reactores Biológicos/microbiología , ADN Bacteriano/análisis , ADN Bacteriano/genética , Electrones , Fermentación , Pseudomonas/genética
10.
BMC Genomics ; 17: 272, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27036196

RESUMEN

BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS: To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION: The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.


Asunto(s)
Brassica/parasitología , Genoma de Protozoos , Interacciones Huésped-Parásitos/genética , Plasmodiophorida/genética , Arabidopsis , Productos Agrícolas/parasitología , Citocininas/metabolismo , ADN Protozoario/genética , Especificidad del Huésped , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/parasitología , Análisis de Secuencia de ARN , Transcriptoma
11.
PLoS One ; 10(8): e0135620, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266808

RESUMEN

The vaginal microbiota is important in women's reproductive and overall health. However, the relationships between the structure, function and dynamics of this complex microbial community and health outcomes remain elusive. The objective of this study was to determine the phylogenetic range and abundance of prokaryotes in the vaginal microbiota of healthy, non-pregnant, ethnically diverse, reproductive-aged Canadian women. Socio-demographic, behavioural and clinical data were collected and vaginal swabs were analyzed from 310 women. Detailed profiles of their vaginal microbiomes were generated by pyrosequencing of the chaperonin-60 universal target. Six community state types (CST) were delineated by hierarchical clustering, including three Lactobacillus-dominated CST (L. crispatus, L. iners, L. jensenii), two Gardnerella-dominated (subgroups A and C) and an "intermediate" CST which included a small number of women with microbiomes dominated by seven other species or with no dominant species but minority populations of Streptococcus, Staphylococcus, Peptoniphilus, E. coli and various Proteobacteria in co-dominant communities. The striking correspondence between Nugent score and deep sequencing CST continues to reinforce the basic premise provided by the simpler Gram stain method, while additional analyses reveal detailed cpn60-based phylogeny and estimated abundance in microbial communities from vaginal samples. Ethnicity was the only demographic or clinical characteristic predicting CST, with differences in Asian and White women (p = 0.05). In conclusion, this study confirms previous work describing four cpn60-based subgroups of Gardnerella, revealing previously undescribed CST. The data describe the range of bacterial communities seen in Canadian women presenting with no specific vaginal health concerns, and provides an important baseline for future investigations of clinically important cohorts.


Asunto(s)
Gardnerella/genética , Vagina/microbiología , Adolescente , Adulto , Canadá , Femenino , Gardnerella/clasificación , Humanos , Microbiota/genética , Persona de Mediana Edad , Filogenia , Salud de la Mujer , Adulto Joven
12.
Anal Bioanal Chem ; 407(7): 1841-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25577362

RESUMEN

Unbiased identification of organisms by PCR reactions using universal primers followed by DNA sequencing assumes positive amplification. We used six universal loci spanning 48 plant species and quantified the bias at each step of the identification process from end point PCR to next-generation sequencing. End point amplification was significantly different for single loci and between species. Quantitative PCR revealed that Cq threshold for various loci, even within a single DNA extraction, showed 2,000-fold differences in DNA quantity after amplification. Next-generation sequencing (NGS) experiments in nine species showed significant biases towards species and specific loci using adaptor-specific primers. NGS sequencing bias may be predicted to some extent by the Cq values of qPCR amplification.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Plantas/genética , Reacción en Cadena de la Polimerasa/métodos
13.
Mol Plant Pathol ; 16(7): 699-709, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25492575

RESUMEN

Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.


Asunto(s)
Ascomicetos/genética , Brassica napus/microbiología , Genes Fúngicos , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Hongos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple
14.
BMC Genomics ; 15: 891, 2014 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-25306241

RESUMEN

BACKGROUND: Many plant-pathogenic fungi have a tendency towards genome size expansion, mostly driven by increasing content of transposable elements (TEs). Through comparative and evolutionary genomics, five members of the Leptosphaeria maculans-Leptosphaeria biglobosa species complex (class Dothideomycetes, order Pleosporales), having different host ranges and pathogenic abilities towards cruciferous plants, were studied to infer the role of TEs on genome shaping, speciation, and on the rise of better adapted pathogens. RESULTS: L. maculans 'brassicae', the most damaging species on oilseed rape, is the only member of the species complex to have a TE-invaded genome (32.5%) compared to the other members genomes (<4%). These TEs had an impact at the structural level by creating large TE-rich regions and are suspected to have been instrumental in chromosomal rearrangements possibly leading to speciation. TEs, associated with species-specific genes involved in disease process, also possibly had an incidence on evolution of pathogenicity by promoting translocations of effector genes to highly dynamic regions and thus tuning the regulation of effector gene expression in planta. CONCLUSIONS: Invasion of L. maculans 'brassicae' genome by TEs followed by bursts of TE activity allowed this species to evolve and to better adapt to its host, making this genome species a peculiarity within its own species complex as well as in the Pleosporales lineage.


Asunto(s)
Adaptación Fisiológica/genética , Ascomicetos/genética , Ascomicetos/fisiología , Elementos Transponibles de ADN/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Plantas/microbiología , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Cromosomas Fúngicos/genética , Secuencia Conservada/genética , Genes Fúngicos/genética , Genómica , Familia de Multigenes/genética , Filogenia , Especificidad de la Especie , Sintenía/genética
15.
Genome Announc ; 2(5)2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25278538

RESUMEN

Pseudomonas sp. BRG100 inhibits the growth of certain agricultural pests and is a potentially useful biopesticide for weeds and plant diseases. We have sequenced the 6.25-Mbp genome of this strain and assembled it into 4 scaffolds. Genome sequence comparisons revealed that this strain may represent a novel species of Pseudomonas.

16.
Microbiome ; 2: 23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25053998

RESUMEN

BACKGROUND: The vaginal microbial community plays a vital role in maintaining women's health. Understanding the precise bacterial composition is challenging because of the diverse and difficult-to-culture nature of many bacterial constituents, necessitating culture-independent methodology. During a natural menstrual cycle, physiological changes could have an impact on bacterial growth, colonization, and community structure. The objective of this study was to assess the stability of the vaginal microbiome of healthy Canadian women throughout a menstrual cycle by using cpn60-based microbiota analysis. Vaginal swabs from 27 naturally cycling reproductive-age women were collected weekly through a single menstrual cycle. Polymerase chain reaction (PCR) was performed to amplify the universal target region of the cpn60 gene and generate amplicons representative of the microbial community. Amplicons were pyrosequenced, assembled into operational taxonomic units, and analyzed. Samples were also assayed for total 16S rRNA gene content and Gardnerella vaginalis by quantitative PCR and screened for the presence of Mollicutes by using family and genus-specific PCR. RESULTS: Overall, the vaginal microbiome of most women remained relatively stable throughout the menstrual cycle, with little variation in diversity and only modest fluctuations in species richness. Microbiomes between women were more different than were those collected consecutively from individual women. Clustering of microbial profiles revealed the expected groupings dominated by Lactobacillus crispatus, Lactobacillus iners, and Lactobacillus jensenii. Interestingly, two additional clusters were dominated by either Bifidobacterium breve or a heterogeneous mixture of nonlactobacilli. Direct G. vaginalis quantification correlated strongly with its pyrosequencing-read abundance, and Mollicutes, including Mycoplasma hominis, Ureaplasma parvum, and Ureaplasma urealyticum, were detected in most samples. CONCLUSIONS: Our cpn60-based investigation of the vaginal microbiome demonstrated that in healthy women most vaginal microbiomes remained stable through their menstrual cycle. Of interest in these findings was the presence of Bifidobacteriales beyond just Gardnerella species. Bifidobacteriales are frequently underrepresented in 16S rRNA gene-based studies, and their detection by cpn60-based investigation suggests that their significance in the vaginal community may be underappreciated.

17.
Plant Cell ; 26(7): 2777-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25035408

RESUMEN

The Brassicaceae (Cruciferae) family, owing to its remarkable species, genetic, and physiological diversity as well as its significant economic potential, has become a model for polyploidy and evolutionary studies. Utilizing extensive transcriptome pyrosequencing of diverse taxa, we established a resolved phylogeny of a subset of crucifer species. We elucidated the frequency, age, and phylogenetic position of polyploidy and lineage separation events that have marked the evolutionary history of the Brassicaceae. Besides the well-known ancient α (47 million years ago [Mya]) and ß (124 Mya) paleopolyploidy events, several species were shown to have undergone a further more recent (∼7 to 12 Mya) round of genome multiplication. We identified eight whole-genome duplications corresponding to at least five independent neo/mesopolyploidy events. Although the Brassicaceae family evolved from other eudicots at the beginning of the Cenozoic era of the Earth (60 Mya), major diversification occurred only during the Neogene period (0 to 23 Mya). Remarkably, the widespread species divergence, major polyploidy, and lineage separation events during Brassicaceae evolution are clustered in time around epoch transitions characterized by prolonged unstable climatic conditions. The synchronized diversification of Brassicaceae species suggests that polyploid events may have conferred higher adaptability and increased tolerance toward the drastically changing global environment, thus facilitating species radiation.


Asunto(s)
Brassicaceae/genética , Cleome/genética , Evolución Molecular , Genoma de Planta/genética , Secuencia de Bases , Brassicaceae/clasificación , Cleome/clasificación , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/clasificación , Hojas de la Planta/genética , Poliploidía , ARN Mensajero/genética , ARN de Planta/química , ARN de Planta/genética , Análisis de Secuencia de ADN , Factores de Tiempo , Transcriptoma
18.
Genome Biol ; 15(6): R77, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24916971

RESUMEN

BACKGROUND: Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. RESULTS: We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. CONCLUSIONS: Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.


Asunto(s)
Brassica/genética , Genoma de Planta , Transcriptoma , Aneuploidia , Brassica/metabolismo , Mapeo Cromosómico , Metilación de ADN , Epigénesis Genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
19.
Nat Commun ; 5: 3706, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24759634

RESUMEN

Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop.


Asunto(s)
Biocombustibles , Brassicaceae/genética , Genoma de Planta , Poliploidía , Cariotipificación
20.
New Phytol ; 202(2): 542-553, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24444052

RESUMEN

In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera.


Asunto(s)
Bacterias/aislamiento & purificación , Brassica/microbiología , Hongos/aislamiento & purificación , Interacciones Microbianas , Microbiota , Semillas/microbiología , Triticum/microbiología , Alternaria/genética , Bacterias/genética , Chaperonina 60/genética , Ecosistema , Hongos/genética , Pantoea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...