Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666175

RESUMEN

Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here, we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.


Asunto(s)
Drosophila melanogaster/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Técnicas de Sustitución del Gen , Imidazoles , Neuronas/fisiología , Temperatura , Proteínas de Unión al GTP rab/deficiencia
2.
PLoS Comput Biol ; 14(8): e1006410, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30161262

RESUMEN

Isolation profoundly influences social behavior in all animals. In humans, isolation has serious effects on health. Drosophila melanogaster is a powerful model to study small-scale, temporally-transient social behavior. However, longer-term analysis of large groups of flies is hampered by the lack of effective and reliable tools. We built a new imaging arena and improved the existing tracking algorithm to reliably follow a large number of flies simultaneously. Next, based on the automatic classification of touch and graph-based social network analysis, we designed an algorithm to quantify changes in the social network in response to prior social isolation. We observed that isolation significantly and swiftly enhanced individual and local social network parameters depicting near-neighbor relationships. We explored the genome-wide molecular correlates of these behavioral changes and found that whereas behavior changed throughout the six days of isolation, gene expression alterations occurred largely on day one. These changes occurred mostly in metabolic genes, and we verified the metabolic changes by showing an increase of lipid content in isolated flies. In summary, we describe a highly reliable tracking and analysis pipeline for large groups of flies that we use to unravel the behavioral, molecular and physiological impact of isolation on social network dynamics in Drosophila.


Asunto(s)
Conducta Animal/fisiología , Vigilancia de la Población/métodos , Aislamiento Social/psicología , Algoritmos , Animales , Computadores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Relaciones Interpersonales , Conducta Social , Programas Informáticos
3.
Curr Biol ; 27(8): 1111-1123, 2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28366741

RESUMEN

Fragile X syndrome (FXS) patients present neuronal alterations that lead to severe intellectual disability, but the underlying neuronal circuit mechanisms are poorly understood. An emerging hypothesis postulates that reduced GABAergic inhibition of excitatory neurons is a key component in the pathophysiology of FXS. Here, we directly test this idea in a FXS Drosophila model. We show that FXS flies exhibit strongly impaired olfactory behaviors. In line with this, olfactory representations are less odor specific due to broader response tuning of excitatory projection neurons. We find that impaired inhibitory interactions underlie reduced specificity in olfactory computations. Finally, we show that defective lateral inhibition across projection neurons is caused by weaker inhibition from GABAergic interneurons. We provide direct evidence that deficient inhibition impairs sensory computations and behavior in an in vivo model of FXS. Together with evidence of impaired inhibition in autism and Rett syndrome, these findings suggest a potentially general mechanism for intellectual disability.


Asunto(s)
Conducta Animal , Modelos Animales de Enfermedad , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Diferenciación Celular , Síndrome del Cromosoma X Frágil/psicología , Red Nerviosa/fisiología , Neuronas Receptoras Olfatorias/citología , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
4.
Cell ; 156(1-2): 69-83, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439370

RESUMEN

During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives--rather than responds to--metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture.


Asunto(s)
Drosophila melanogaster/fisiología , Neovascularización Fisiológica , Neuropéptidos/metabolismo , Animales , Calcio/metabolismo , Sistema Digestivo/irrigación sanguínea , Humanos , Modelos Animales , Neovascularización Patológica , Neuronas/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Péptido Intestinal Vasoactivo/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(30): 12177-82, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778427

RESUMEN

The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDF's established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Uréter/fisiología , Animales , AMP Cíclico/metabolismo , Cartilla de ADN/genética , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...