Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4760, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35306519

RESUMEN

Heart failure is a multifactorial disease that affects an estimated 38 million people worldwide. Current pharmacotherapy of heart failure with reduced ejection fraction (HFrEF) includes combination therapy with angiotensin-converting enzyme inhibitors (ACEi) and ß-adrenergic receptor blockers (ß-AR blockers), a therapy also used as treatment for non-cardiac conditions. Our knowledge of the molecular changes accompanying treatment with ACEi and ß-AR blockers is limited. Here, we applied proteomics and phosphoproteomics approaches to profile the global changes in protein abundance and phosphorylation state in cardiac left ventricles consequent to combination therapy of ß-AR blocker and ACE inhibitor in HFrEF and control hearts. The phosphorylation changes induced by treatment were profoundly different for failing than for non-failing hearts. HFrEF was characterized by profound downregulation of mitochondrial proteins coupled with derangement of ß-adrenergic and pyruvate dehydrogenase signaling. Upon treatment, phosphorylation changes consequent to HFrEF were reversed. In control hearts, treatment mainly led to downregulation of canonical PKA signaling. The observation of divergent signaling outcomes depending on disease state underscores the importance of evaluating drug effects within the context of the specific conditions present in the recipient heart.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Insuficiencia Cardíaca , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Corazón , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Volumen Sistólico/fisiología
2.
Glob Chang Biol ; 27(24): 6467-6483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498351

RESUMEN

The responses of forest carbon dynamics to fluctuations in environmental conditions at a global scale remain elusive. Despite the understanding that favourable environmental conditions promote forest growth, these responses have been challenging to observe across different ecosystems and climate gradients. Based on a global annual time series of aboveground biomass (AGB) estimated from radar satellites between 1992 and 2018, we present forest carbon changes and provide insights on their sensitivities to environmental conditions across scales. Our findings indicate differences in forest carbon changes across AGB classes, with regions with carbon stocks of 50-125 MgC ha-1 depict the highest forest carbon gains and losses, while regions with 125-150 MgC ha-1  have the lowest forest carbon gains and losses in absolute terms. Net forest carbon change estimates show that the arc-of-deforestation and the Congo Basin were the main hotspots of forest carbon loss, while a substantial part of European forest gained carbon during the last three decades. Furthermore, we observe that changes in forest carbon stocks were systematically positively correlated with changes in forest cover fraction. At the same time, it was not necessarily the case with other environmental variables, such as air temperature and water availability at the bivariate level. We also used a model attribution method to demonstrate that atmospheric conditions were the dominant control of forest carbon changes (56% of the total study area) followed by water-related (29% of the total study area) and vegetation (15% of the total study area) conditions. Regionally, we find evidence that carbon gains from long-term forest growth covary with long-term carbon sinks inferred from atmospheric inversions. Our results describe the contributions from the atmosphere, water-related and vegetation conditions to forest carbon changes and provide new insights into the underlying mechanisms of the coupling between forest growth and the global carbon cycle.


Asunto(s)
Carbono , Árboles , Biomasa , Secuestro de Carbono , Ecosistema , Bosques
3.
PLoS Biol ; 19(4): e3001144, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872299

RESUMEN

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.


Asunto(s)
Miocardio/metabolismo , Proteoma/metabolismo , Animales , Corazón/fisiología , Ventrículos Cardíacos/química , Ventrículos Cardíacos/metabolismo , Caballos , Humanos , Ratones , Modelos Animales , Miocardio/química , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Ratas , Especificidad de la Especie , Porcinos , Pez Cebra
4.
Mol Cell Proteomics ; 19(7): 1132-1144, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32291283

RESUMEN

Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF).We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts.This is the largest dataset of cardiac protein expression from human samples collected in vivo It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis.


Asunto(s)
Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Prolapso de la Válvula Mitral/metabolismo , Proteoma/metabolismo , Fibrilación Atrial/complicaciones , Fibrilación Atrial/fisiopatología , Biopsia , Cromatografía Líquida de Alta Presión , Ontología de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Prolapso de la Válvula Mitral/genética , Proteómica , Regulación hacia Arriba
5.
Nat Commun ; 10(1): 2889, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253831

RESUMEN

The sinus node is a collection of highly specialised cells constituting the heart's pacemaker. The molecular underpinnings of its pacemaking abilities are debated. Using high-resolution mass spectrometry, we here quantify >7,000 proteins from sinus node and neighbouring atrial muscle. Abundances of 575 proteins differ between the two tissues. By performing single-nucleus RNA sequencing of sinus node biopsies, we attribute measured protein abundances to specific cell types. The data reveal significant differences in ion channels responsible for the membrane clock, but not in Ca2+ clock proteins, suggesting that the membrane clock underpins pacemaking. Consistently, incorporation of ion channel expression differences into a biophysically-detailed atrial action potential model result in pacemaking and a sinus node-like action potential. Combining our quantitative proteomics data with computational modeling, we estimate ion channel copy numbers for sinus node myocytes. Our findings provide detailed insights into the unique molecular make-up of the cardiac pacemaker.


Asunto(s)
Relojes Biológicos/fisiología , Péptidos/química , Péptidos/metabolismo , Proteómica , Nodo Sinoatrial/metabolismo , Transcriptoma , Potenciales de Acción , Animales , Cromatografía Liquida , Regulación de la Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Espectrometría de Masas en Tándem
6.
Nat Commun ; 9(1): 4316, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333491

RESUMEN

A family history of atrial fibrillation constitutes a substantial risk of developing the disease, however, the pathogenesis of this complex disease is poorly understood. We perform whole-exome sequencing on 24 families with at least three family members diagnosed with atrial fibrillation (AF) and find that titin-truncating variants (TTNtv) are significantly enriched in these patients (P = 1.76 × 10-6). This finding is replicated in an independent cohort of early-onset lone AF patients (n = 399; odds ratio = 36.8; P = 4.13 × 10-6). A CRISPR/Cas9 modified zebrafish carrying a truncating variant of titin is used to investigate TTNtv effect in atrial development. We observe compromised assembly of the sarcomere in both atria and ventricle, longer PR interval, and heterozygous adult zebrafish have a higher degree of fibrosis in the atria, indicating that TTNtv are important risk factors for AF. This aligns with the early onset of the disease and adds an important dimension to the understanding of the molecular predisposition for AF.


Asunto(s)
Fibrilación Atrial/genética , Conectina/genética , Adulto , Anciano , Animales , Fibrilación Atrial/patología , Estudios de Casos y Controles , Estudios de Cohortes , Conectina/metabolismo , Femenino , Fibrosis , Variación Genética , Humanos , Masculino , Miocardio/metabolismo , Miocardio/ultraestructura , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Adulto Joven , Pez Cebra
7.
Circ Res ; 121(9): 1058-1068, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821541

RESUMEN

RATIONALE: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.


Asunto(s)
Bradicardia/metabolismo , Ejercicio Físico/fisiología , Marcación de Gen/métodos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Condicionamiento Físico Animal/fisiología , Canales de Potasio/metabolismo , Adolescente , Adulto , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Técnicas de Silenciamiento del Gen/métodos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Musculares/genética , Condicionamiento Físico Animal/métodos , Canales de Potasio/genética , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...