Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscientist ; 22(2): 132-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25628343

RESUMEN

The major cholesterol metabolite in brain, 24(S)-hydroxycholesterol (24S-HC), serves as a vehicle for cholesterol removal. Its effects on neuronal function, however, have only recently begun to be investigated. Here, we review that nascent work. Our own studies have demonstrated that 24S-HC has potent positive modulatory effects on N-methyl-d-aspartate (NMDA) receptor (NMDAR) function. This could have implications not only for brain plasticity but also for pathological NMDAR overuse. Other work has demonstrated effects of 24S-HC on neuronal survival and as a possible biomarker of neurodegenerative disease. Depending on circumstances, both upregulation/mimicry of 24S-HC signaling and down-regulation/antagonism may have therapeutic potential. We are interested in the possibility that synthetic analogues of 24S-HC with positive effects at NMDARs may hold neurotherapeutic promise, given the role of NMDA receptor hypofunction in certain neuropsychiatric disorders.


Asunto(s)
Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Encefalopatías/tratamiento farmacológico , Encefalopatías/genética , Encefalopatías/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Colesterol 24-Hidroxilasa/genética , Humanos , Ratones , Neuronas/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
2.
Neuropharmacology ; 85: 232-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24878244

RESUMEN

Oxysterols have emerged as important biomarkers in disease and as signaling molecules. We recently showed that the oxysterol 24(S)-hydroxycholesterol, the major brain cholesterol metabolite, potently and selectively enhances NMDA receptor function at a site distinct from other modulators. Here we further characterize the pharmacological mechanisms of 24(S)-hydroxycholesterol and its synthetic analog SGE201. We describe an oxysterol antagonist of this positive allosteric modulation, 25-hydroxycholesterol. We found that 24(S)-hydroxycholesterol and SGE201 primarily increased the efficacy of NMDAR agonists but did not directly gate the channel or increase functional receptor number. Rather than binding to a direct aqueous-accessible site, oxysterols may partition into the plasma membrane to access the NMDAR, likely explaining slow onset and offset kinetics of modulation. Interestingly, oxysterols were ineffective when applied to the cytosolic face of inside-out membrane patches or through a whole-cell pipette solution, suggesting a non-intracellular site. We also found that another natural oxysterol, 25-hydroxycholesterol, although exhibiting slight potentiation on its own, non-competitively and enantioselectively antagonized the effects of 24(S)-hydroxycholesterol analogs. In summary, we suggest two novel allosteric sites on NMDARs that separately modulate channel gating, but together oppose each other.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Hidroxicolesteroles/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Citosol/efectos de los fármacos , Citosol/metabolismo , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Cinética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Xenopus laevis
3.
J Neurosci ; 33(44): 17290-300, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24174662

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABAA receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 µM. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development.


Asunto(s)
Colesterol/metabolismo , Hipocampo/metabolismo , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Potenciales de Acción/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Femenino , Masculino , Ratones , Noresteroides/metabolismo , Noresteroides/farmacología , Técnicas de Cultivo de Órganos , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
4.
Mol Pharmacol ; 83(2): 354-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23144238

RESUMEN

NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABA(A) receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC(50) of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists.


Asunto(s)
Picratos/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Aniones/farmacología , Línea Celular , Femenino , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , N-Metilaspartato/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotransmisores/farmacología , Oocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus laevis/metabolismo
5.
J Neurochem ; 122(1): 175-84, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22486217

RESUMEN

Parkinson's disease is characterized by a deficiency in motor cortex modulation due to degeneration of pigmented dopaminergic neurons of the substantia nigra projecting to the striatum. These neurons are particularly susceptible to oxidative stress, perhaps because of their dopaminergic nature. Like all catecholamines, dopamine is easily oxidized, first to a quinone intermediate and then to dopaminochrome (DAC), a 5-dihydroxyindole tautomer, that is cytotoxic in an oxidative stress-dependent manner. Here we show, using the murine mesencephalic cell line MN9D, that DAC causes cell death by apoptosis, illustrated by membrane blebbing, Annexin V, and propidium iodide labeling within 3 h. In addition, DAC causes oxidative damage to DNA within 3 h, and positive terminal deoxynucleotidyl transferase dUTP nick end labeling fluorescence by 24 h. DAC, however, does not induce caspase 3 activation and its cytotoxic actions are not prevented by the pan-caspase inhibitor, Z-VAD-fmk. DAC-induced cytotoxicity is limited by the PARP1 inhibitor, 5-aminoisoquinolinone, supporting a role for apoptosis-inducing factor (AIF) in the apoptotic process. Indeed, AIF is detected in the nuclear fraction of MN9D cells 3 h after DAC exposure. Taken together these results demonstrate that DAC induces cytotoxicity in MN9D cells in a caspase-independent apoptotic manner, likely triggered by oxidative damage to DNA, and involving the translocation of AIF from the mitochondria to the nucleus.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Indolquinonas/farmacología , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Anexina A5/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Transformada , Daño del ADN/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Etiquetado Corte-Fin in Situ , Isoquinolinas/farmacología , Mesencéfalo/citología , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Propidio , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
6.
Neurotoxicology ; 30(6): 1030-5, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19619580

RESUMEN

Parkinson disease is a specific form of neurodegeneration characterized by a loss of nigra-striatal dopaminergic neurons in the midbrain of humans. The disease is also characterized by an increase in oxidative stress and a loss of glutathione in the midbrain region. A potential link between all these factors is the oxidation of dopamine to dopaminochrome (DAC). Using the murine mesencephalic cell line MN9D, we have shown that DAC [50-250 microM] leads to cell death in a concentration-dependent manner, whereas oxidized l-dopa, dopachrome [50-250 microM], is only toxic at the highest concentration used. Furthermore, chronic exposure of MN9D cells to low concentrations of DAC [50-100 microM] is cytotoxic between 48 and 96 h. DAC also increases superoxide production within MN9D cells as indicated by dihydroethidium fluorescence, that can be prevented by co-administration with the antioxidant, N-acetylcysteine [5 mM]. Moreover, the cytotoxicity induced by DAC can also be prevented by administration of N-acetylcysteine [1-5mM]. Finally, depletion of reduced glutathione in MN9D cells by buthionine sulfoximine [50-100 microM] administration significantly enhances the cytotoxic effect of low concentrations of DAC [50-100 microM] and DAC [175 microM] itself reduces the proportion of oxidized glutathione in total glutathione within 30 min of administration in MN9D cells. Overall, we have shown that DAC causes MN9D cell death in an oxidatively dependent manner that appears closely linked with a rapid loss of reduced glutathione. These findings have implications for understanding the pathogenesis of neurodegenerative pathways in Parkinson disease.


Asunto(s)
Indolquinonas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Etidio/análogos & derivados , Depuradores de Radicales Libres/farmacología , Glutatión/metabolismo , Mesencéfalo/citología , Ratones , Neuronas/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...