Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15610, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730806

RESUMEN

The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.


Asunto(s)
Ácido N-Acetilneuramínico , Salmonidae , Animales , Femenino , Humanos , Células HEK293 , Bioensayo
2.
RSC Chem Biol ; 4(2): 173-183, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794016

RESUMEN

Most Escherichia coli strains associated with neonatal meningitis express the K1 capsule, a sialic acid polysaccharide that is directly related to their pathogenicity. Metabolic oligosaccharide engineering (MOE) has mostly been developed in eukaryotes, but has also been successfully applied to the study of several oligosaccharides or polysaccharides constitutive of the bacterial cell wall. However, bacterial capsules are seldom targeted despite their important role as virulence factors, and the K1 polysialic acid (PSA) antigen that shields bacteria from the immune system still remains untackled. Herein, we report a fluorescence microplate assay that allows the fast and facile detection of K1 capsules with an approach that combines MOE and bioorthogonal chemistry. We exploit the incorporation of synthetic analogues of N-acetylmannosamine or N-acetylneuraminic acid, metabolic precursors of PSA, and copper-catalysed azide-alkyne cycloaddition (CuAAC) as the click chemistry reaction to specifically label the modified K1 antigen with a fluorophore. The method was optimized, validated by capsule purification and fluorescence microscopy, and applied to the detection of whole encapsulated bacteria in a miniaturized assay. We observe that analogues of ManNAc are readily incorporated into the capsule while those of Neu5Ac are less efficiently metabolized, which provides useful information regarding the capsule biosynthetic pathways and the promiscuity of the enzymes involved. Moreover, this microplate assay is transferable to screening approaches and may provide a platform to identify novel capsule-targeted antibiotics that would circumvent resistance issues.

3.
Methods Mol Biol ; 2566: 261-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152258

RESUMEN

In some specific vascular plant tissues, lignin can impregnate the entire cell wall to make it more rigid and hydrophobic. Different techniques have been developed in the past years to make possible the quantification of this polyphenolic polymer at the organ or tissue level, but difficulties of access to the cellular level remain. Here we describe an approach based on ratiometric emission measurements using safranin-O and the development of a macro adapted for the FIJI software, which makes it possible to quantify lignin in three different layers of the cell wall on images captured on a fluorescent confocal microscope.


Asunto(s)
Lignina , Fenazinas , Pared Celular/química , Colorantes/análisis , Lignina/química , Fenazinas/análisis , Coloración y Etiquetado
4.
Sci Rep ; 12(1): 22129, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550357

RESUMEN

Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.


Asunto(s)
Alquinos , Azidas , Humanos , Azidas/química , Alquinos/química , Células HEK293 , Hexosaminas , Ácido N-Acetilneuramínico/metabolismo , Química Clic/métodos
5.
Biochem Biophys Res Commun ; 617(Pt 1): 16-21, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35667241

RESUMEN

The CMP-sialic acid synthetase (CSS) activates free sialic acid (Sia) to CMP-Sia using CTP, and is prerequisite for the sialylation of cell surface glycoconjugates. The vertebrate CSS consists of two domains, a catalytic N-domain and a non-catalytic C-domain. Although the C-domain is not required for the CSS enzyme to synthesize CMP-Sia, its involvement in the catalytic activity remains unknown. First, the real-time monitoring of CSS-catalyzed reaction was performed by 31P NMR using the rainbow trout CSS (rtCSS). While a rtCSS lacking the C-domain (rtCSS-N) similarly activated both deaminoneuraminic acid (Kdn) and N-acetylneuraminic acid (Neu5Ac), the full-length rtCSS (rtCSS-FL) did not activate Kdn as efficiently as Neu5Ac. These results suggest that the C-domain of rtCSS affects the enzymatic activity, when Kdn was used as a substrate. Second, the enzymatic activity of rtCSS-FL and rtCSS-N was measured under various concentrations of CMP-Kdn. Inhibition by CMP-Kdn was observed only for rtCSS-FL, but not for rtCSS-N, suggesting that the inhibition was C-domain-dependent. Third, the inhibitory effect of CMP-Kdn was also investigated using the mouse CSS (mCSS). However, no inhibition was observed with mCSS even at high concentrations of CMP-Kdn. Taken together, the data demonstrated that the C-domain is involved in the CMP-Kdn-dependent inhibition of rtCSS, which is a novel regulation of the Sia metabolism in rainbow trout.


Asunto(s)
N-Acilneuraminato Citidililtransferasa , Oncorhynchus mykiss , Animales , Citidina Monofosfato/análogos & derivados , Ratones , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferasa/metabolismo , Ácidos Neuramínicos , Ácidos Siálicos/metabolismo
6.
Plant Physiol ; 188(2): 816-830, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687294

RESUMEN

This article describes a methodology for detailed mapping of the lignification capacity of plant cell walls that we have called "REPRISAL" for REPorter Ratiometrics Integrating Segmentation for Analyzing Lignification. REPRISAL consists of the combination of three separate approaches. In the first approach, H*, G*, and S* monolignol chemical reporters, corresponding to p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, are used to label the growing lignin polymer in a fluorescent triple labeling strategy based on the sequential use of three main bioorthogonal chemical reactions. In the second step, an automatic parametric and/or artificial intelligence segmentation algorithm is developed that assigns fluorescent image pixels to three distinct cell wall zones corresponding to cell corners, compound middle lamella and secondary cell walls. The last step corresponds to the exploitation of a ratiometric approach enabling statistical analyses of differences in monolignol reporter distribution (ratiometric method [RM] 1) and proportions (RM 2) within the different cell wall zones. We first describe the use of this methodology to map developmentally related changes in the lignification capacity of wild-type Arabidopsis (Arabidopsis thaliana) interfascicular fiber cells. We then apply REPRISAL to analyze the Arabidopsis peroxidase (PRX) mutant prx64 and provide further evidence for the implication of the AtPRX64 protein in floral stem lignification. In addition, we also demonstrate the general applicability of REPRISAL by using it to map lignification capacity in poplar (Populus tremula × Populus alba), flax (Linum usitatissimum), and maize (Zea mays). Finally, we show that the methodology can be used to map the incorporation of a fucose reporter into noncellulosic cell wall polymers.


Asunto(s)
Arabidopsis/fisiología , Botánica/instrumentación , Lignina/fisiología , Arabidopsis/genética , Botánica/métodos , Pared Celular/fisiología , Lignina/genética , Células Vegetales/fisiología
7.
Angew Chem Int Ed Engl ; 60(43): 23084-23105, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34097349

RESUMEN

The surging development of bioorthogonal chemistry has profoundly transformed chemical biology over the last two decades. Involving chemical partners that specifically react together in highly complex biological fluids, this branch of chemistry now allows researchers to probe biomolecules in their natural habitat through metabolic labelling technologies. Chemical reporter strategies include metabolic glycan labelling, site-specific incorporation of unnatural amino acids in proteins, and post-synthetic labelling of nucleic acids. While a majority of literature reports mark cell-surface exposed targets, implementing bioorthogonal ligations in the interior of cells constitutes a more challenging task. Owing to limiting factors such as membrane permeability of reagents, fluorescence background due to hydrophobic interactions and off-target covalent binding, and suboptimal balance between reactivity and stability of the designed molecular reporters and probes, these strategies need mindful planning to achieve success. In this review, we discuss the hurdles encountered when targeting biomolecules localized in cell organelles and give an easily accessible summary of the strategies at hand for imaging intracellular targets.


Asunto(s)
Colorantes Fluorescentes/química , Sondas Moleculares/química , Ácidos Nucleicos/química , Polisacáridos/química , Proteínas/química , Alquinos/química , Animales , Azidas/química , Bacterias/química , Línea Celular Tumoral , Química Clic , Reacción de Cicloadición , Colorantes Fluorescentes/síntesis química , Humanos , Sondas Moleculares/síntesis química
8.
Chem Commun (Camb) ; 57(3): 404, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33393953

RESUMEN

Correction for 'EPR imaging of sinapyl alcohol and its application to the study of plant cell wall lignification' by Clémence Simon et al., Chem. Commun., 2021, DOI: .

9.
Chem Commun (Camb) ; 57(3): 387-390, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33326527

RESUMEN

In bioimaging, bioorthogonal chemistry is most often used to visualize chemical reporters by fluorescence in their native environment. Herein, we show that TEMPO-based probes can be ligated to monolignol reporters by Diels-Alder chemistry in plant cell walls, paving the way for the study of lignification by EPR spectroscopy and imaging.


Asunto(s)
Pared Celular/química , Óxidos N-Cíclicos/análisis , Óxidos N-Cíclicos/química , Lino/química , Fenilpropionatos/análisis , Espectroscopía de Resonancia por Spin del Electrón , Lino/citología , Estructura Molecular
10.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847109

RESUMEN

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis , Pared Celular/metabolismo , Glucosiltransferasas/fisiología , Lignina/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Lignina/química , Mutación , Plantas Modificadas Genéticamente , Xilema/metabolismo
11.
Int J Mol Sci ; 20(3)2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30709055

RESUMEN

The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome. Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ hybridization experiments demonstrate that expression of this gene is always detectable during zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly, using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay (MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on glycoproteins or glycolipids as the human homologue does. Using comparative genomics and molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has disappeared in the ray-finned fish and that the homologue described in fish correspond to a new subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes and Sarcopterygii.


Asunto(s)
Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Células COS , Sistema Nervioso Central/metabolismo , Chlorocebus aethiops , Simulación por Computador , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Glucolípidos/química , Glicoproteínas/química , Células HEK293 , Humanos , Filogenia , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato , Distribución Tisular , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
12.
Angew Chem Int Ed Engl ; 57(51): 16665-16671, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30370981

RESUMEN

Reported herein is an in vivo triple labelling strategy to monitor the formation of plant cell walls. Based on a combination of copper-catalysed alkyne-azide cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), and Diels-Alder reaction with inverse electronic demand (DARinv ), this methodology can be applied to various plant species of interest in research. It allowed detection of the differential incorporation of alkynyl-, azido-, and methylcyclopropenyl-tagged reporters of the three main monolignols into de novo biosynthesized lignin in different tissues, cell types, or cell wall layers. In addition, this triple labelling was implemented with different classes of chemical reporters, using two monolignol reporters in conjunction with alkynylfucose to simultaneously monitor the biosynthesis of lignin and non-cellulosic polysaccharides. This allowed observation of their deposition occurring contemporaneously in the same cell wall.


Asunto(s)
Pared Celular/metabolismo , Lignina/biosíntesis , Plantas/metabolismo , Polisacáridos/biosíntesis , Pared Celular/química , Lignina/química , Estructura Molecular , Polisacáridos/química
13.
Bioconjug Chem ; 29(10): 3377-3384, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30192128

RESUMEN

Mammalian sialyltransferases transfer sialic acids onto glycoproteins and glycolipids within the Golgi apparatus. Despite their key role in glycosylation, the study of their enzymatic activities is limited by the lack of appropriate tools. Herein, we developed a quick and sensitive sialyltransferase microplate assay based on the use of the unnatural CMP-SiaNAl donor substrate. In this assay, an appropriate acceptor glycoprotein is coated on the bottom of 96-well plate and the sialyltransferase activity is assessed using CMP-SiaNAl. The alkyne tag of SiaNAl enables subsequent covalent ligation of an azido-biotin probe via CuAAC and an antibiotin-HRP conjugated antibody is then used to quantify the amount of transferred SiaNAl by a colorimetric titration. With this test, we evaluated the kinetic characteristics and substrate preferences of two human sialyltransferases, ST6Gal I and ST3Gal I toward a panel of asialoglycoprotein acceptors, and identified cations that display a sialyltransferase inhibitory effect.


Asunto(s)
Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Biotina/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía Liquida/métodos , Colorimetría/métodos , Glicoproteínas/metabolismo , Células HEK293 , Peroxidasa de Rábano Silvestre/química , Humanos , Límite de Detección , Espectrometría de Masas/métodos , Espectroscopía de Protones por Resonancia Magnética , Sialiltransferasas/química , Especificidad por Sustrato , beta-D-Galactósido alfa 2-6-Sialiltransferasa , beta-Galactosida alfa-2,3-Sialiltransferasa
14.
J Vis Exp ; (131)2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29443107

RESUMEN

Lignin is one of the most prevalent biopolymers on the planet and a major component of lignocellulosic biomass. This phenolic polymer plays a vital structural and protective role in the development and life of higher plants. Although the intricate mechanisms regulating lignification processes in vivo strongly impact the industrial valorization of many plant-derived products, the scientific community still has a long way to go to decipher them. In a simple three-step workflow, the dual labeling protocol presented herein enables bioimaging studies of actively lignifying zones of plant tissues. The first step consists in the metabolic incorporation of two independent chemical reporters, surrogates of the two native monolignols that give rise to lignin H- and G-units. After incorporation into growing lignin polymers, each reporter is then specifically labeled with its own fluorescent probe via a sequential combination of bioorthogonal SPAAC/CuAAC click reactions. Combined with lignin autofluorescence, this approach leads to the generation of three-color localization maps of lignin within plant cell walls by confocal fluorescence microscopy and provides precise spatial information on the presence or absence of active lignification machinery at the scale of plant tissues, cells and different cell wall layers.


Asunto(s)
Pared Celular/química , Química Clic/métodos , Lignina/química
15.
J Inherit Metab Dis ; 41(3): 515-523, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29294191

RESUMEN

The development of metabolic oligosaccharide engineering (MOE) over the past two decades enabled the bioimaging studies of glycosylation processes in physio-pathological contexts. Herein, we successfully applied the chemical reporter strategy to image the fate of sialylated glycoconjugates in healthy and sialin-deficient patient fibroblasts. This chemical glycomics enrichment is a powerful tool for tracking sialylated glycoconjugates and probing lysosomal recycling capacities. Thus, such strategies appear fundamental for the characterization of lysosomal storage diseases.


Asunto(s)
Glicómica/métodos , Ingeniería Metabólica/métodos , Ácido N-Acetilneuramínico/análisis , Ácido N-Acetilneuramínico/metabolismo , Oligosacáridos/metabolismo , Imagen Individual de Molécula/métodos , Estudios de Casos y Controles , Fraccionamiento Químico , Técnicas Químicas Combinatorias/métodos , Humanos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Redes y Vías Metabólicas/fisiología , Oligosacáridos/análisis , Oligosacáridos/química
16.
Plant Signal Behav ; 12(8): e1359366, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28786751

RESUMEN

Lignin is a polyphenolic polymer of the plant cell wall formed by the oxidative polymerization of 3 main monomers called monolignols that give rise to the lignin H-, G- and S-units. Together with cellulose and hemicelluloses, lignin is a major component of plant biomass that is widely exploited by humans in numerous industrial processes. Despite recent advances in our understanding of monolignol biosynthesis, our current understanding of the spatio-temporal regulation of their transport and polymerization is more limited. In a recent publication, we have reported the development of an original Bioorthogonal Labeling Imaging Sequential Strategy (BLISS) that allows us to visualize the simultaneous incorporation dynamics of H and G monolignol reporters into lignifying cell walls of the flax stem. 11 Here, we extend the application of this strategy to other plant organs such as roots and rapidly discuss some of the contributions and perspectives of this new technique for improving our understanding of the lignification process in plants.


Asunto(s)
Imagenología Tridimensional , Lignina/metabolismo , Plantas/metabolismo , Coloración y Etiquetado , Pared Celular/metabolismo , Lino/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo
17.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28395125

RESUMEN

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Asunto(s)
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/análogos & derivados , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Expresión Génica , Glucolípidos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferasa/genética , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Polisacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferasas/química , Sialiltransferasas/genética , Especificidad por Sustrato , beta-Galactosida alfa-2,3-Sialiltransferasa
18.
Cell Chem Biol ; 24(3): 326-338, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262560

RESUMEN

A better in vivo understanding of lignin formation within plant cell walls will contribute to improving the valorization of plant-derived biomass. Although bioorthogonal chemistry provides a promising platform to study the lignification process, methodologies that simultaneously detect multiple chemical reporters in living organisms are still scarce. Here, we have developed an original bioorthogonal labeling imaging sequential strategy (BLISS) to visualize and analyze the incorporation of both p-hydroxyphenyl (H) and guaiacyl (G) units into lignin in vivo with a combination of strain-promoted and copper-catalyzed azide-alkyne cycloadditions. On our path to BLISS, we designed a new azide-tagged monolignol reporter for H units in metabolic lignin engineering and used it in conjunction with an alkyne-tagged G unit surrogate to study lignification dynamics in flax. Here, we show that BLISS provides precise spatial information on the zones of active lignification and reveals polarization in single-cell lignification dynamics.


Asunto(s)
Lignina/química , Plantas/metabolismo , Coloración y Etiquetado/métodos , Alquinos/química , Azidas/química , Catálisis , Pared Celular/química , Pared Celular/metabolismo , Cobre/química , Ácidos Cumáricos , Reacción de Cicloadición , Lino/química , Lino/metabolismo , Lignina/metabolismo , Microscopía Fluorescente , Plantas/química , Propionatos/química
19.
Glycobiology ; 26(11): 1151-1156, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27543325

RESUMEN

Natural and synthetically modified cytidine monophosphate activated sialic acids (CMP-Sias) are essential research assets in the field of glycobiology: among other applications, they can be used to probe glycans, detect sialylation defects at the cell surface or carry out detailed studies of sialyltransferase activities. However, these chemical tools are notoriously unstable because of hydrolytic decomposition, and are very time-consuming and costly to obtain. They are nigh impossible to store with satisfactory purity, and their preparation requires multiple laborious purification steps that usually lead to heavy product loss. Using in situ time-resolved 31P phosphorus nuclear magnetic resonance (31P NMR), we precisely established the kinetics of formation and degradation of a number of CMP-Sias including CMP-Neu5Ac, CMP-Neu5Gc, CMP-SiaNAl and CMP-SiaNAz in several experimental conditions. 31P NMR can be carried out in undeuterated solvents and is a sensitive and nondestructive technique that allows for direct in situ monitoring and optimization of chemo-enzymatic syntheses that involve phosphorus-containing species. Thus, we showed that CMP-sialic acid derivatives can be robustly obtained in high yields using the readily available Neisseria meningitidis CMP-sialic acid synthase. This integrated workflow takes less than an hour, and the freshly prepared CMP-Sias can be directly transferred to sialylation biological assays without any purification step.


Asunto(s)
Citidina Monofosfato/química , Sondas Moleculares/química , Polisacáridos/análisis , Ácidos Siálicos/química , Citidina Monofosfato/biosíntesis , Citidina Monofosfato/síntesis química , Sondas Moleculares/biosíntesis , Sondas Moleculares/síntesis química , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/enzimología , Ácidos Siálicos/biosíntesis , Ácidos Siálicos/síntesis química
20.
Eur J Med Chem ; 117: 256-68, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27105029

RESUMEN

Herein, we report further insight into the biological activities displayed by the 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) scaffold. Previous studies have evidenced the marked fruitful effect of substitution of this two-metal binding pharmacophore at position 4 by phenyl and benzyl carboxamido chains. Strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range with micromolar (even down to low nanomolar) anti-HIV activities were obtained. Keeping this essential 4-carboxamido function, we investigated the influence of the replacement of phenyl and benzyl groups by various alkyl chains. This study shows that the recurrent halogenobenzyl pharmacophore found in the INSTIs can be efficiently replaced by an n-alkyl group. With an optimal length of six carbons, we observed a biological profile and a high barrier to resistance equivalent to those of a previously reported hit compound bearing a 4-fluorobenzyl group.


Asunto(s)
Inhibidores de Integrasa VIH/química , Isoquinolinas/química , Alquilación , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores de Integrasa VIH/farmacología , Humanos , Isoquinolinas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...