Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-35438951

RESUMEN

Control of work function (WF) in graphene is crucial for graphene application in electrode material replacement and electrode surface protection in optoelectronic devices. Although efforts have been made to manipulate the effective WF of graphene to optimize its application, most studies have focused on graphene employed in static electrical contact interfaces. In this work, we investigated WF variations of supported single-layer graphene (SLG) in sliding electrical contact under ambient conditions, which was achieved by sliding an electrically biased conductive atomic force microscopy (cAFM) probe on the SLG surface. The effective WF, structural properties, and chemical compositions of rubbed SLG were subsequently measured by Kelvin probe force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. We found that the effective WF of the rubbed SLG was governed by both the tunneling triboelectric effect (TTE) and tribochemical-induced surface functionalization. The TTE charges generated by the sliding cAFM probe tunneled through the structural defects of the SLG and were trapped underneath the SLG. The SLG will be either p-doped or n-doped depending on the type of TTE charges and the polarity of electric bias applied to the cAFM probe during the rubbing process. However, the applied electric bias also led to the electrolysis of a water meniscus formed at the cAFM probe-SLG contact, resulting in surface oxidation and the increase of SLG WF. Further absorption of ambient water molecules on the oxygenated functional groups gradually reduced the SLG WF. The influence of TTE and surface functionalization on the SLG WF depends on the magnitude and polarity of applied electric biases, relative humidity, and physical properties of the supporting substrates. Our results demonstrate that the effective WF of SLG in a sliding electrical contact interface will vary with time and might need to be considered for related applications.

3.
ACS Appl Mater Interfaces ; 11(50): 47289-47298, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31746197

RESUMEN

Development of n-/p-type semiconducting graphenes is a critical route to implement in graphene-based nanoelectronics and optronics. Compared to the p-type graphene, the n-type graphene is more difficult to be prepared. Recently, phosphorous doping was reported to achieve air-stable and high mobility of n-typed graphene. The phosphorous-doped graphene (P-Gra) by ion implantation is considered as an ideal method for tailoring graphene due to its IC compatible process; however, for a conventional ion implanter, the acceleration energy is in the order of kiloelectron volts (keV), thus severely destroys the sp2 bonding of graphene owing to its high energy of accelerated ions. The introduced defects, therefore, degrade the electrical performance of graphene. Here, for the first time, we report a low-damage n-typed chemical vapor deposition (CVD) graphene by an industrial-compatible ion implanter with an energy of 20 keV where the designed protection layer (thin Au film) covered on as-grown CVD graphene is employed to efficiently reduce defect formation. The additional post-annealing is found to heal the crystal defects of graphene. Moreover, this method allows transferring ultraclean and residue-free P-Gra onto versatile target substrates directly. The doping configuration, crystallinity, and electrical properties on P-Gra were comprehensively studied. The results indicate that the low-damaged P-Gra with a controllable doping concentration of up to 4.22 at % was achieved, which is the highest concentration ever recorded. The doped graphenes with tunable work functions (4.85-4.15 eV) and stable n-type doping while keeping high-carrier mobility are realized. This work contributes to the proof-of-concept for tailoring graphene or 2D materials through doping with an exceptional low defect density by the low energy ion implantation, suggesting a great potential for unconventional doping technologies for next-generation 2D-based nanoelectronics.

4.
ACS Omega ; 4(17): 17536-17541, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31656926

RESUMEN

The multilayer 1T-TaSe2 is successfully synthesized by annealing a Se-implanted Ta thin film on the SiO2/Si substrate. Material analyses confirm the 1T (octahedral) structure and the quasi-2D nature of the prepared TaSe2. Temperature-dependent resistivity reveals that the multilayer 1T-TaSe2 obtained by our method undergoes a commensurate charge-density wave (CCDW) transition at around 500 K. This synthesis process has been applied to synthesize MoSe2 and HfSe2 and expanded for synthesis of one more transition-metal dichalcogenide (TMD) material. In addition, the main issue of the process, that is, the excess metal capping on the TMD layers, is solved by the reduction of thickness of the as-deposited metal thin film in this work.

5.
Nanotechnology ; 28(3): 035603, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27934779

RESUMEN

We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...