Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acid Ther ; 30(5): 276-288, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32486960

RESUMEN

Activated protein C (APC) is a serine protease with anticoagulant and cytoprotective activities. Nonanticoagulant APC mutants show beneficial effects as cytoprotective agents. To study, if such biased APC signaling can be achieved by APC-binding ligands, the aptamer technology has been used. A G-quadruplex-containing aptamer, G-NB3, has been selected that binds to the basic exosite of APC with a KD of 0.2 nM and shows no binding to APC-related serine proteases or the zymogen protein C. G-NB3 inhibits the inactivation of activated cofactors V and VIII with IC50 values of 11.6 and 13.1 nM, respectively, without inhibiting the cytoprotective and anti-inflammatory functions of APC as tested using a staurosporine-induced apoptosis assay and a vascular barrier protection assay. In addition, G-NB3 prolongs the plasma half-life of APC through inhibition of APC-serine protease inhibitor complex formation. These physicochemical and functional characteristics qualify G-NB3 as a promising therapeutic agent usable to enhance the cytoprotective functions of APC without increasing the risk of APC-related hemorrhage.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Hemorragia/tratamiento farmacológico , Proteína C/farmacología , Serina Proteasas/farmacología , Anticoagulantes/farmacología , Aptámeros de Nucleótidos/genética , Coagulación Sanguínea/efectos de los fármacos , G-Cuádruplex , Hemorragia/patología , Humanos , Ligandos , Unión Proteica/genética , Proteína C/genética , Serina Proteasas/genética , Transducción de Señal/efectos de los fármacos , Trombina/genética
2.
PLoS One ; 14(6): e0218258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194850

RESUMEN

Replacement therapy in severe hemophilia A leads to factor VIII (FVIII) inhibitors in 30% of patients. Factor VIII gene (F8) mutation type, a family history of inhibitors, ethnicity and intensity of treatment are established risk factors, and were included in two published prediction tools based on regression models. Recently investigated immune regulatory genes could also play a part in immunogenicity. Our objective is to identify bio-clinical and genetic markers for FVIII inhibitor development, taking into account potential genetic high order interactions. The study population consisted of 593 and 79 patients with hemophilia A from centers in Bonn and Frankfurt respectively. Data was collected in the European ABIRISK tranSMART database. A subset of 125 severely affected patients from Bonn with reliable information on first treatment was selected as eligible for risk stratification using a hybrid tree-based regression model (GPLTR). In the eligible subset, 58 (46%) patients developed FVIII inhibitors. Among them, 49 (84%) were "high risk" F8 mutation type. 19 (33%) had a family history of inhibitors. The GPLTR model, taking into account F8 mutation risk, family history of inhibitors and product type, distinguishes two groups of patients: a high-risk group for immunogenicity, including patients with positive HLA-DRB1*15 and genotype G/A and A/A for IL-10 rs1800896, and a low-risk group of patients with negative HLA-DRB1*15 / HLA-DQB1*02 and T/T or G/T for CD86 rs2681401. We show associations between genetic factors and the occurrence of FVIII inhibitor development in severe hemophilia A patients taking into account for high-order interactions using a generalized partially linear tree-based approach.


Asunto(s)
Factor VIII/genética , Hemofilia A/genética , Medición de Riesgo/métodos , Antígeno B7-2/genética , Biomarcadores Farmacológicos , Pruebas de Coagulación Sanguínea , Factor VIII/antagonistas & inhibidores , Factor VIII/metabolismo , Genotipo , Alemania , Cadenas HLA-DRB1/genética , Hemofilia A/terapia , Humanos , Interleucina-10/genética , Análisis Multivariante , Mutación , Polimorfismo de Nucleótido Simple/genética , Estudios Prospectivos , Factores de Riesgo
3.
Blood Adv ; 2(6): 691-702, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29581108

RESUMEN

Vitamin K reduction is catalyzed by 2 enzymes in vitro: the vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) and its isozyme VKORC1-like1 (VKORC1L1). In vivo, VKORC1 reduces vitamin K to sustain γ-carboxylation of vitamin K-dependent proteins, including coagulation factors. Inhibition of VKORC1 by oral anticoagulants (OACs) is clinically used in therapy and in prevention of thrombosis. However, OACs also inhibit VKORC1L1, which was previously shown to play a role in intracellular redox homeostasis in vitro. Here, we report data for the first time on specific inhibition of both VKOR enzymes for various OACs and rodenticides examined in a cell-based assay. Effects on endogenous VKORC1 and VKORC1L1 were independently investigated in genetically engineered HEK 293T cells that were knocked out for the respective genes by CRISPR/Cas9 technology. In general, dose-responses for 4-hydroxycoumarins and 1,3-indandiones were enzyme-dependent, with lower susceptibility for VKORC1L1 compared with VKORC1. In contrast, rodenticides exhibited nearly identical dose-responses for both enzymes. To explain the distinct inhibition pattern, we performed in silico modeling suggesting different warfarin binding sites for VKORC1 and VKORC1L1. We identified arginine residues at positions 38, 42, and 68 in the endoplasmatic reticulum luminal loop of VKORC1L1 responsible for charge-stabilized warfarin binding, resulting in a binding pocket that is diametrically opposite to that of VKORC1. In conclusion, our findings provide insight into structural and molecular drug binding on VKORC1, and especially on VKORC1L1.


Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Sitios de Unión , Vitamina K Epóxido Reductasas/antagonistas & inhibidores , Vitamina K Epóxido Reductasas/química , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacología , Secuencia de Bases , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Estrés Oxidativo/efectos de los fármacos , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Rodenticidas/química , Rodenticidas/farmacología , Vitamina K Epóxido Reductasas/genética , Warfarina/química , Warfarina/farmacología
4.
Ann Hematol ; 97(6): 1061-1069, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29450643

RESUMEN

One of the most common and unwanted side effects during oral anticoagulant therapy (OAT) is bleeding complications. In rare cases, vitamin K antagonist (VKA)-related bleeding events are associated with mutations affecting the F9 propeptide at amino acid position 37 due to a substitution of alanine to either valine or threonine. Based on our actual cohort of 18 patients, we update the knowledge on this rare phenotype and its origin. A founder mutation for both variants was reconfirmed by haplotype analysis of intronic and extragenic short tandem repeat (STR) polymorphisms with a higher prevalence in Switzerland than in other regions of Europe. Screening of healthy individuals for the presence of these F9 gene mutations did not identify any of these variants, thus proving the rare occurrence of this genotype. Furthermore, both variants were expressed in vitro and warfarin dose responses were studied. Our warfarin dose response analysis confirmed higher sensitivity of both variants to warfarin with the effect being more apparent for Ala37Thr. Thus, although F9 propeptide mutation-associated hypersensitivity to VKA is a rare phenomenon, awareness towards this bleeding phenotype is important to identify patients at risk.


Asunto(s)
Anticoagulantes/farmacología , Factor IX/genética , Mutación , Polimorfismo Genético , Vitamina K/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos , Anticoagulantes/efectos adversos , Estudios de Cohortes , Factor IX/análisis , Factor IX/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Hemorragia/sangre , Hemorragia/inducido químicamente , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/metabolismo , Suiza , Secuencias Repetidas en Tándem , Warfarina/efectos adversos , Warfarina/farmacología
5.
Nat Struct Mol Biol ; 24(1): 77-85, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27941861

RESUMEN

Vitamin K epoxide reductase (VKOR) catalyzes the reduction of vitamin K quinone and vitamin K 2,3-epoxide, a process essential to sustain γ-carboxylation of vitamin K-dependent proteins. VKOR is also a therapeutic target of warfarin, a treatment for thrombotic disorders. However, the structural and functional basis of vitamin K reduction and the antagonism of warfarin inhibition remain elusive. Here, we identified putative binding sites of both K vitamers and warfarin on human VKOR. The predicted warfarin-binding site was verified by shifted dose-response curves of specified mutated residues. We used CRISPR-Cas9-engineered HEK 293T cells to assess the vitamin K quinone and vitamin K 2,3-epoxide reductase activities of VKOR variants to characterize the vitamin K naphthoquinone head- and isoprenoid side chain-binding regions. Our results challenge the prevailing concept of noncompetitive warfarin inhibition because K vitamers and warfarin share binding sites on VKOR that include Phe55, a key residue binding either the substrate or inhibitor.


Asunto(s)
Vitamina K Epóxido Reductasas/química , Warfarina/química , Biocatálisis , Dominio Catalítico , Resistencia a Medicamentos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Fenilalanina/química , Unión Proteica , Conformación Proteica en Hélice alfa , Vitamina K 1/análogos & derivados , Vitamina K 1/química , Vitamina K 2/química , Vitamina K Epóxido Reductasas/antagonistas & inhibidores
6.
Thromb Res ; 135(5): 977-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25747820

RESUMEN

VKORC1 and VKORC1L1 are enzymes that both catalyze the reduction of vitamin K2,3-epoxide via vitamin K quinone to vitamin K hydroquinone. VKORC1 is the key enzyme of the classical vitamin K cycle by which vitamin K-dependent (VKD) proteins are γ-carboxylated by the hepatic γ-glutamyl carboxylase (GGCX). In contrast, the VKORC1 paralog enzyme, VKORC1L1, is chiefly responsible for antioxidative function by reduction of vitamin K to prevent damage by intracellular reactive oxygen species. To investigate tissue-specific vitamin K 2,3-epoxide reductase (VKOR) function of both enzymes, we quantified mRNA levels for VKORC1, VKORC1L1, GGCX, and NQO1 and measured VKOR enzymatic activities in 29 different mouse tissues. VKORC1 and GGCX are highly expressed in liver, lung and exocrine tissues including mammary gland, salivary gland and prostate suggesting important extrahepatic roles for the vitamin K cycle. Interestingly, VKORC1L1 showed highest transcription levels in brain. Due to the absence of detectable NQO1 transcription in liver, we assume this enzyme has no bypass function with respect to activation of VKD coagulation proteins. Our data strongly suggest diverse functions for the vitamin K cycle in extrahepatic biological pathways.


Asunto(s)
Proteínas de la Membrana/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Animales , Encéfalo/metabolismo , Ligasas de Carbono-Carbono/genética , Ligasas de Carbono-Carbono/metabolismo , Glándulas Exocrinas/metabolismo , Femenino , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Microsomas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética
7.
Biochim Biophys Acta ; 1791(5): 357-70, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19830907

RESUMEN

Sphingosine-1-phosphate (S1P), formed by sphingosine kinases (SphKs), regulates cellular proliferation and migration by acting as an agonist at specific receptors or intracellularly. Since S1P's effects are probably dependent on subcellular localization of its formation and degradation, we have studied the influence of G protein-coupled receptors on the localization of SphK1. Activation of Gq-coupled receptors induced a profound, rapid (half-life 3-5 s) and long-lasting (> 2 h) translocation of SphK1 to the plasma membrane. This was mimicked by expression of constitutively active G protein alpha-subunits specifically of the Gq family. Classical Gq signalling pathways, or phosphorylation at Ser225, phospholipase D and Ca2+/calmodulin were not involved in M3 receptor-induced SphK1 translocation in HEK-293 cells. Translocation was associated with S1P receptor internalization, which was dependent on catalytic activity of SphK1 and S1P receptor binding and thus resulted from S1P receptor cross-activation. It is concluded that SphK1 is an important effector of Gq-coupled receptors, linking them via cross-activation of S1P receptors to G(i) and G12/13 signalling pathways.


Asunto(s)
Membrana Celular/enzimología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Diglicéridos/metabolismo , Endocitosis/efectos de los fármacos , Humanos , Ratones , Fosfolipasa D/metabolismo , Fosfoserina/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas/efectos de los fármacos , Receptor Muscarínico M3/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...