Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 188: 114560, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33844984

RESUMEN

Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.


Asunto(s)
Multimerización de Proteína/fisiología , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Cannabinoides/deficiencia , Receptores de Cannabinoides/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Animales Recién Nacidos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Embarazo , Multimerización de Proteína/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
EMBO Rep ; 21(1): e48469, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31789450

RESUMEN

Amino acids are essential for cellular metabolism, and it is important to understand how nutrient supply is coordinated with changing energy requirements during embryogenesis. Here, we show that the amino acid transporter Slc7a5/Lat1 is highly expressed in tissues undergoing morphogenesis and that Slc7a5-null mouse embryos have profound neural and limb bud outgrowth defects. Slc7a5-null neural tissue exhibited aberrant mTORC1 activity and cell proliferation; transcriptomics, protein phosphorylation and apoptosis analyses further indicated induction of the integrated stress response as a potential cause of observed defects. The pattern of stress response gene expression induced in Slc7a5-null embryos was also detected at low level in wild-type embryos and identified stress vulnerability specifically in tissues undergoing morphogenesis. The Slc7a5-null phenotype is reminiscent of Wnt pathway mutants, and we show that Wnt/ß-catenin loss inhibits Slc7a5 expression and induces this stress response. Wnt signalling therefore normally supports the metabolic demands of morphogenesis and constrains cellular stress. Moreover, operation in the embryo of the integrated stress response, which is triggered by pathogen-mediated as well as metabolic stress, may provide a mechanistic explanation for a range of developmental defects.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1 , Vía de Señalización Wnt , Animales , Proliferación Celular/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Morfogénesis
3.
Pharmacol Res Perspect ; 7(3): e00487, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31149342

RESUMEN

The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury. While LPI activates multiple signaling pathways, little is known about which ones are important in cardiomyocytes. In this study we explored whether activation of the Rho kinase/ROCK/p38 MAPK pathway is responsible for LPI-induced extension of I/R injury. Using a high-throughput screening method (dynamic mass redistribution; DMR), mouse- and human-induced pluripotent stem cell (iPSC) cardiomyocytes exposed to LPI were shown to exhibit a rapid, sustained, and concentration-dependent (1 nmol L-1-30 µmol L-1) cellular response. Y-27632 (ROCK inhibitor; 10 & 50 µmol L-1) and CBD (1 µmol L-1) both abolished the DMR response to LPI (10 µmol L-1). In murine iPSC cardiomyocytes, LPI-induced ROCK and p38 MAPK phosphorylation, both of which were prevented by Y-27632 and CBD, but did not induce JNK activation or cleavage of caspase-3. In hearts isolated from wild type (WT) mice subjected to 30 minutes global I/R, LPI (10 µmol L-1) administered via the coronary circulation increased infarct size when applied prior to ischemia onset, but not when given at the time of reperfusion. The exacerbation of tissue injury by LPI was not seen in hearts from GPR55-/- mice or in the presence of Y-27632, confirming that injury is mediated via the GPR55/ROCK/p38 MAPK pathway. These findings suggest that raised levels of LPI in the vicinity of a developing infarct may worsen the outcome of AMI.


Asunto(s)
Lisofosfolípidos/efectos adversos , Daño por Reperfusión Miocárdica/inducido químicamente , Receptores de Cannabinoides/metabolismo , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Animales , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Receptores de Cannabinoides/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1866(6): 978-991, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30857869

RESUMEN

Extracellular amino acid (AA) withdrawal/restriction invokes an integrated stress response (ISR) that induces global suppression of protein synthesis whilst allowing transcription and translation of a select group of genes, whose protein products facilitate cellular adaptation to AA insufficiency. Transcriptional induction of the System A/SNAT2 AA transporter represents a classic adaptation response and crucially depends upon activation of the General Control Nonderepressible-2 kinase/Activating transcription factor 4 (GCN2/ATF4) pathway. However, the ISR may also include additional signalling inputs operating in conjunction or independently of GCN2/ATF4 to upregulate SNAT2. Herein, we show that whilst pharmacological inhibition of MEK-ERK, mTORC1 and p38 MAP kinase signalling has no detectable effect on System A upregulation, inhibitors targeting GSK3 (e.g. SB415286) caused significant repression of the SNAT2 adaptation response. Strikingly, the effects of SB415286 persist in cells in which GSK3α/ß have been stably silenced indicating an off-target effect. We show that SB415286 can also inhibit cyclin-dependent kinases (CDK) and that roscovitine and flavopiridol (two pan CDK inhibitors) are effective repressors of the SNAT2 adaptive response. In particular, our work reveals that CDK7 activity is upregulated in AA-deprived cells in a GCN-2-dependent manner and that a potent and selective CDK7 inhibitor, THZ-1, not only attenuates the increase in ATF4 expression but blocks System A adaptation. Importantly, the inhibitory effects of THZ-1 on System A adaptation are mitigated in cells expressing a doxycycline-inducible drug-resistant form of CDK7. Our data identify CDK7 as a novel component of the ISR regulating System A adaptation in response to AA insufficiency.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Aminoácidos/deficiencia , Quinasas Ciclina-Dependientes/metabolismo , Estrés Fisiológico , Factor de Transcripción Activador 4/metabolismo , Aminofenoles/farmacología , Animales , Línea Celular , Flavonoides/farmacología , Células HEK293 , Células HeLa , Humanos , Maleimidas/farmacología , Fenilendiaminas/farmacología , Piperidinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/farmacología , Ratas , Roscovitina/farmacología , Quinasa Activadora de Quinasas Ciclina-Dependientes
5.
FASEB J ; 33(1): 1299-1312, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30148676

RESUMEN

Emerging evidence indicates that G-protein coupled receptor 55 (GPR55), a nonclassic receptor of the endocannabinoid system that is activated by L-α-lysophosphatidylinositol and various cannabinoid ligands, may regulate endocrine function and energy metabolism. We examined how GPR55 deficiency and modulation affects insulin signaling in skeletal muscle, adipose tissue, and liver alongside expression analysis of proteins implicated in insulin action and energy metabolism. We show that GPR55-null mice display decreased insulin sensitivity in these tissues, as evidenced by reduced phosphorylation of PKB/Akt and its downstream targets, concomitant with increased adiposity and reduced physical activity relative to wild-type counterparts. Impaired tissue insulin sensitivity coincided with reduced insulin receptor substrate-1 abundance in skeletal muscle, whereas in liver and epididymal fat it was associated with increased expression of the 3-phosphoinoistide lipid phosphatase, phosphatase and tensin homolog. In contrast, GPR55 activation enhanced insulin signaling in cultured skeletal muscle cells, adipocytes, and hepatocytes; this response was negated by receptor antagonists and GPR55 gene silencing in L6 myotubes. Sustained GPR55 antagonism in 3T3-L1 adipocytes enhanced expression of proteins implicated in lipogenesis and promoted triglyceride accumulation. Our findings identify GPR55 as a positive regulator of insulin action and adipogenesis and as a potential therapeutic target for countering obesity-induced metabolic dysfunction and insulin resistance.-Lipina, C., Walsh, S. K., Mitchell, S. E., Speakman, J. R., Wainwright, C. L., Hundal, H. S. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad/genética , Insulina/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Receptores de Cannabinoides/fisiología , Transducción de Señal , Células 3T3-L1 , Tejido Adiposo/citología , Animales , Línea Celular Tumoral , Metabolismo Energético , Humanos , Hígado/citología , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptores de Cannabinoides/genética
6.
J Mol Cell Biol ; 9(2): 91-103, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130308

RESUMEN

­: The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work supporting nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic signalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to various pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.


Asunto(s)
Endocannabinoides/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Animales , Enfermedad , Humanos , Modelos Biológicos , Proteínas/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 8(2): 190-201, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27897400

RESUMEN

Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention.


Asunto(s)
Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Animales , Composición Corporal , Humanos , Músculo Esquelético/anatomía & histología
8.
Trends Endocrinol Metab ; 27(12): 868-880, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27613400

RESUMEN

Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders.


Asunto(s)
Factores de Transcripción/metabolismo , Animales , Humanos , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética
9.
Open Biol ; 6(4): 150276, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27248801

RESUMEN

The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation.


Asunto(s)
Endocannabinoides/metabolismo , Homeostasis , Animales , Humanos , Modelos Biológicos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
10.
Cell Signal ; 28(5): 412-424, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26827808

RESUMEN

Iron is an indispensable micronutrient that regulates many aspects of cell function, including growth and proliferation. These processes are critically dependent upon signalling via the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Herein, we test whether iron depletion induced by cell incubation with the iron chelator, deferoxamine (DFO), mediates its effects on cell growth through mTORC1-directed signalling and protein synthesis. We have used Caco-2 cells, a well-established in vitro model of human intestinal epithelia. Iron depletion increased expression of iron-regulated proteins (TfR, transferrin receptor and DMT1, divalent metal transporter, as predicted, but it also promoted a marked reduction in growth and proliferation of Caco-2 cells. This was strongly associated with suppressed mTORC1 signalling, as judged by reduced phosphorylation of mTOR substrates, S6K1 and 4E-BP1, and diminished protein synthesis. The reduction in mTORC1 signalling was tightly coupled with increased expression and accumulation of REDD1 (regulated in DNA damage and development 1) and reduced phosphorylation of Akt and TSC2. The increase in REDD1 abundance was rapidly reversed upon iron repletion of cells but was also attenuated by inhibitors of gene transcription, protein phosphatase 2A (PP2A) and by REDD1 siRNA--strategies that also antagonised the loss in mTORC1 signalling associated with iron depletion. Our findings implicate REDD1 and PP2A as crucial regulators of mTORC1 activity in iron-depleted cells and indicate that their modulation may help mitigate atrophy of the intestinal mucosa that may occur in response to iron deficiency.


Asunto(s)
Mucosa Intestinal/metabolismo , Deficiencias de Hierro , Complejos Multiproteicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Deferoxamina/farmacología , Regulación hacia Abajo , Humanos , Mucosa Intestinal/enzimología , Quelantes del Hierro/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Biosíntesis de Proteínas , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/biosíntesis
11.
Aging Cell ; 15(2): 325-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26757949

RESUMEN

The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant-mediated insulin sensitization in aged adipose tissue coincided with amelioration of low-grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Resistencia a la Insulina , Enfermedades Metabólicas/tratamiento farmacológico , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Factores de Edad , Animales , Línea Celular , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Expresión Génica , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Rimonabant
12.
FEBS Lett ; 589(21): 3221-7, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26434718

RESUMEN

Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders.


Asunto(s)
Gangliósido G(M3)/biosíntesis , Resistencia a la Insulina , Obesidad/complicaciones , Animales , Humanos , Obesidad/metabolismo , Transducción de Señal
13.
Cell Signal ; 27(9): 1742-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26022181

RESUMEN

The plasma membrane-associated enzyme NEU3 sialidase functions to cleave sialic acid residues from the ganglioside GM3 thereby promoting its degradation, and has been implicated in the modulation of insulin action. Herein, we report for the first time that impaired insulin sensitivity in skeletal muscle and liver of obese Zucker fatty rats and aged C57BL/6 mice coincides with reduced NEU3 protein abundance. In addition, high fat feeding was found to significantly reduce NEU3 protein in white adipose tissue of rats. Notably, we also demonstrate the ability of the fatty acids palmitate and oleate to repress and induce NEU3 protein in L6 myotubes, concomitant with their insulin desensitising and enhancing effects, respectively. Moreover, we show that the palmitate-driven loss in NEU3 protein is mediated, at least in part, by intracellular ceramide synthesis but does not involve the proteasomal pathway. Strikingly, we further reveal that protein kinase B (PKB/Akt) acts as a key positive modulator of NEU3 protein abundance. Together, our findings implicate NEU3 as a potential biomarker of insulin sensitivity, and provide novel mechanistic insight into the regulation of NEU3 expression.


Asunto(s)
Tejido Adiposo/enzimología , Grasas de la Dieta/farmacología , Ácidos Grasos/farmacología , Resistencia a la Insulina , Fibras Musculares Esqueléticas/enzimología , Neuraminidasa/metabolismo , Tejido Adiposo/patología , Animales , Línea Celular , Masculino , Ratones , Fibras Musculares Esqueléticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Ratas Zucker , Transducción de Señal/efectos de los fármacos
14.
Cell Signal ; 26(11): 2343-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25038454

RESUMEN

Carnosic acid (CA) is a major constituent of the labiate herbal plant Rosemary (Rosmarinus officinalis), which has been shown to exhibit a number of beneficial health properties. In particular, recently there has been growing interest into the anti-obesity effects conveyed by CA, including its ability to counteract obesity-associated hyperglycaemia and insulin resistance. However, the mechanisms underlying its anti-diabetic responses are not fully understood. In this study, we hypothesized that CA may act to improve glycaemic status through enhancing peripheral glucose clearance. Herein, we demonstrate that CA acts to mimic the metabolic actions of insulin by directly stimulating glucose uptake in rat skeletal L6 myotubes, concomitant with increased translocation of the GLUT4 glucose transporter to the plasma membrane. Mechanistically, CA-induced glucose transport was found to be dependent on protein kinase B (PKB/Akt) but not AMPK, despite both kinases being activated by CA. Crucially, in accordance with its ability to activate PKB and stimulate glucose uptake, we show that CA conveys these effects through a pathway involving PME-1 (protein phosphatase methylesterase-1), a key negative regulator of the serine/threonine phosphatase PP2A (protein phosphatase 2A). Herein, we demonstrate that CA promotes PME-1 mediated demethylation of the PP2A catalytic subunit leading to its suppressed activity, and in doing so, alleviates the repressive action of PP2A towards PKB. Collectively, our findings provide new insight into how CA may improve glucose homeostasis through enhancing peripheral glucose clearance in tissues such as skeletal muscle through a PME-1/PP2A/PKB signalling axis, thereby mitigating pathological effects associated with the hyperglycaemic state.


Asunto(s)
Abietanos/farmacología , Antioxidantes/farmacología , Hidrolasas de Éster Carboxílico/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/enzimología , Extractos Vegetales/farmacología , Proteína Fosfatasa 2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Hidrolasas de Éster Carboxílico/genética , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Fibras Musculares Esqueléticas/patología , Proteína Fosfatasa 2/genética , Ratas
15.
PLoS One ; 9(7): e101865, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25058613

RESUMEN

Ceramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies.


Asunto(s)
Ceramidas/farmacología , Insulina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Caveolinas/genética , Caveolinas/metabolismo , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
16.
Am J Physiol Endocrinol Metab ; 307(1): E1-13, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24801388

RESUMEN

The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria, which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilization. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity and, where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.


Asunto(s)
Endocannabinoides/metabolismo , Metabolismo Energético , Homeostasis , Enfermedades Metabólicas/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Receptores de Cannabinoides/metabolismo , Animales , Retroalimentación Fisiológica , Humanos , Resistencia a la Insulina
17.
PLoS One ; 9(3): e92255, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24632852

RESUMEN

AIMS/HYPOTHESIS: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. PRINCIPAL FINDINGS: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt- and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine307phosphorylation - events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A. CONCLUSIONS/INTERPRETATION: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A.


Asunto(s)
Resistencia a la Insulina , Ácido Linoleico/farmacología , Músculo Esquelético/citología , Ácido Oléico/farmacología , Proteína Fosfatasa 2/metabolismo , Adulto , Animales , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/efectos adversos , Humanos , Insulina/metabolismo , Metilación/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/efectos adversos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
18.
J Lipid Res ; 54(9): 2366-78, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23833248

RESUMEN

Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIP(Ser153) phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate's proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate's ability to restrain palmitate-induced mitochondrial dysfunction.


Asunto(s)
Diglicéridos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Mitocondrias/metabolismo , Palmitatos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Oxígeno/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Ratas
19.
Diabetes ; 62(10): 3426-36, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23733201

RESUMEN

The relationship between glucose and lipid metabolism has been of significant interest in understanding the pathogenesis of obesity-induced insulin resistance. To gain insight into this metabolic paradigm, we explored the potential interplay between cellular glucose flux and lipid-induced metabolic dysfunction within skeletal muscle. Here, we show that palmitate (PA)-induced insulin resistance and proinflammation in muscle cells, which is associated with reduced mitochondrial integrity and oxidative capacity, can be attenuated under conditions of glucose withdrawal or glycolytic inhibition using 2-deoxyglucose (2DG). Importantly, these glucopenic-driven improvements coincide with the preservation of mitochondrial function and are dependent on PA oxidation, which becomes markedly enhanced in the absence of glucose. Intriguingly, despite its ability to upregulate mitochondrial PA oxidation, glucose withdrawal did not attenuate PA-induced increases in total intramyocellular diacylglycerol and ceramide. Furthermore, consistent with our findings in cultured muscle cells, we also report enhanced insulin sensitivity and reduced proinflammatory tone in soleus muscle from obese Zucker rats fed a 2DG-supplemented diet. Notably, this improved metabolic status after 2DG dietary intervention is associated with markedly reduced plasma free fatty acids. Collectively, our data highlight the key role that mitochondrial substrate availability plays in lipid-induced metabolic dysregulation both in vitro and in vivo.


Asunto(s)
Antimetabolitos/farmacología , Desoxiglucosa/farmacología , Inflamación/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Palmitatos/metabolismo , Transducción de Señal , Animales , Ácidos Grasos no Esterificados/metabolismo , Glucólisis/efectos de los fármacos , Immunoblotting , Inflamación/etiología , Masculino , Obesidad/complicaciones , Oxidación-Reducción , Estrés Oxidativo , Palmitatos/administración & dosificación , Ratas , Ratas Zucker , Regulación hacia Arriba
20.
PLoS One ; 8(2): e56928, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468892

RESUMEN

Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20-37 kg/m(2)). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min(-1).m(-2).), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR.


Asunto(s)
Resistencia a la Insulina , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Adulto , Glucemia , Composición Corporal , Activación Enzimática , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...