Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 116: 109741, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36709593

RESUMEN

Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.


Asunto(s)
Infarto del Miocardio , Timosina , Ratones , Humanos , Animales , Infarto del Miocardio/terapia , Infarto del Miocardio/genética , Timosina/genética , Timosina/uso terapéutico , Timosina/metabolismo , Pericardio , Péptidos , Envejecimiento
2.
Int Immunopharmacol ; 1162023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38706788

RESUMEN

Acute tympanic membrane perforations primarily occur due to injury or infection in humans. In acute cases, nearly 80-94 % of the perforations heal spontaneously. In chronic cases, non-surgical treatment becomes significantly limited, and the perforation can be restored only by myringoplasty. In addition to classical grafts such as the fascia or cartilage, promising results have been reported with various biological materials including silk or acellular collagen. However, despite of all the efforts, healing remains insufficient. Consequentially, a need for substances which actively promote tympanic cell migration and proliferation is deemed essential. In our study, we utilized Thymosin beta-4 (TB4), a 43aa peptide possessing many regenerative properties in various organ systems. Our aim was to reveal the impact of externally administered TB4 regarding impairments of the middle ear, particularly the tympanic membrane. We harvested tympanic membranes from adult mice and treated these with TB4 or PBS on both collagen gel matrixes and in the form of floating, ex vivo explants. Cell migration and proliferation was measured, while immunocytochemical analyses were performed to determine cell type and the nature of the targeted molecules. We discovered the peptide affects the behavior of epidermal and epithelial cells of the tympanic membrane in vitro. Moreover, as our initial results imply, it is not the differentiated, yet most likely the local epidermal progenitor cells which are the primary targets of the molecule. Our present results unveil a new, thus far undiscovered field regarding clinical utilization for TB4 in the future.


Asunto(s)
Movimiento Celular , Proliferación Celular , Timosina , Membrana Timpánica , Cicatrización de Heridas , Timosina/uso terapéutico , Animales , Movimiento Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Ratones , Membrana Timpánica/patología , Proliferación Celular/efectos de los fármacos , Oído Medio/patología , Humanos , Perforación de la Membrana Timpánica/tratamiento farmacológico , Células Epiteliales , Colágeno/metabolismo , Ratones Endogámicos C57BL , Masculino
3.
Cells ; 10(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071596

RESUMEN

Our dream of defeating the processes of aging has occupied the curious and has challenged scientists globally for hundreds of years. The history is long, and sadly, the solution is still elusive. Our endeavors to reverse the magnitude of damaging cellular and molecular alterations resulted in only a few, yet significant advancements. Furthermore, as our lifespan increases, physicians are facing more mind-bending questions in their routine practice than ever before. Although the ultimate goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. As our initial approach to enhance the endogenous restorative capacity by delivering exogenous progenitor cells appears limited, we propose, utilizing small molecules critical during embryonic development may prove to be a powerful tool to increase regeneration and to reverse the processes associated with aging. In this review, we introduce Thymosin beta-4, a 43aa secreted peptide fulfilling our hopes and capable of numerous regenerative achievements via systemic administration in the heart. Observing the broad capacity of this small, secreted peptide, we believe it is not the only molecule which nature conceals to our benefit. Hence, the discovery and postnatal administration of developmentally relevant agents along with other approaches may result in reversing the aging process.


Asunto(s)
Envejecimiento/efectos de los fármacos , Regeneración/efectos de los fármacos , Timosina/farmacología , Animales , Desarrollo Embrionario/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...