Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Proc Natl Acad Sci U S A ; 119(37): e2208813119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067287

RESUMEN

Increasing diversity on farms can enhance many key ecosystem services to and from agriculture, and natural control of arthropod pests is often presumed to be among them. The expectation that increasing the size of monocultural crop plantings exacerbates the impact of pests is common throughout the agroecological literature. However, the theoretical basis for this expectation is uncertain; mechanistic mathematical models suggest instead that increasing field size can have positive, negative, neutral, or even nonlinear effects on arthropod pest densities. Here, we report a broad survey of crop field-size effects: across 14 pest species, 5 crops, and 20,000 field years of observations, we quantify the impact of field size on pest densities, pesticide applications, and crop yield. We find no evidence that larger fields cause consistently worse pest impacts. The most common outcome (9 of 14 species) was for pest severity to be independent of field size; larger fields resulted in less severe pest problems for four species, and only one species exhibited the expected trend of larger fields worsening pest severity. Importantly, pest responses to field size strongly correlated with their responses to the fraction of the surrounding landscape planted to the focal crop, suggesting that shared ecological processes produce parallel responses to crop simplification across spatial scales. We conclude that the idea that larger field sizes consistently disrupt natural pest control services is without foundation in either the theoretical or empirical record.


Asunto(s)
Protección de Cultivos , Productos Agrícolas , Control de Insectos , Insectos , Control Biológico de Vectores , Animales , Productos Agrícolas/parasitología , Ecosistema
3.
Curr Opin Insect Sci ; 47: 90-102, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004376

RESUMEN

Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.


Asunto(s)
Cambio Climático , Insectos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA