Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Pathog ; 15(3): e1007511, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30893371

RESUMEN

While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis.


Asunto(s)
Proliferación Celular/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Cicatrización de Heridas/fisiología , Adulto , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Femenino , Aptitud Genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Ratones , Infecciones por Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Virulencia/fisiología , Infección de Heridas/metabolismo , Infección de Heridas/microbiología
3.
Proc Natl Acad Sci U S A ; 112(16): 5189-94, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848053

RESUMEN

The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition--growth in a rich undefined medium--and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism's carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents.


Asunto(s)
Pseudomonas aeruginosa/metabolismo , Carbono/metabolismo , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Genes Bacterianos , Genes Esenciales , Mutagénesis Insercional/genética , Filogenia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo
4.
Appl Microbiol Biotechnol ; 97(5): 2093-107, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22915193

RESUMEN

High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries.


Asunto(s)
Etanol/metabolismo , Expresión Génica , Presión Hidrostática , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico , Brasil , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
5.
Adv Wound Care (New Rochelle) ; 2(7): 389-399, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24527355

RESUMEN

SIGNIFICANCE: The incidence, cost, morbidity, and mortality associated with non-healing of chronic skin wounds are dramatic. With the increasing numbers of people with obesity, chronic medical conditions, and an increasing life expectancy, the healthcare cost of non-healing ulcers has recently been estimated at $25 billion annually in the United States. The role played by bacterial biofilm in chronic wounds has been emphasized in recent years, particularly in the context of the prolongation of the inflammatory phase of repair. RECENT ADVANCES: Rapid high-throughput genomic approaches have revolutionized the ability to identify and quantify microbial organisms from wounds. Defining bacterial genomes and using genetic approaches to knock out specific bacterial functions, then studying bacterial survival on cutaneous wounds is a promising strategy for understanding which genes are essential for pathogenicity. CRITICAL ISSUES: When an animal sustains a cutaneous wound, understanding mechanisms involved in adaptations by bacteria and adaptations by the host in the struggle for survival is central to development of interventions that favor the host. FUTURE DIRECTIONS: Characterization of microbiomes of clinically well characterized chronic human wounds is now under way. The use of in vivo models of biofilm-infected cutaneous wounds will permit the study of the mechanisms needed for biofilm formation, persistence, and potential synergistic interactions among bacteria. A more complete understanding of bacterial survival mechanisms and how microbes influence host repair mechanisms are likely to provide targets for chronic wound therapy.

6.
Curr Pharm Biotechnol ; 13(15): 2712-20, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23072392

RESUMEN

A number of transcriptional control elements are activated when Saccharomyces cerevisiae cells are submitted to various stress conditions, including high hydrostatic pressure (HHP). Exposure of Saccharomyces cerevisiae cells to HHP results in global transcriptional reprogramming, similar to that observed under other industrial stresses, such as temperature, ethanol and oxidative stresses. Moreover, treatment with a mild hydrostatic pressure renders yeast cells multistress tolerant. In order to identify transcriptional factors involved in coordinating response to high hydrostatic pressure, we performed a time series microarray expression analysis on a wild S. cerevisiae strain exposed to 50 MPa for 30 min followed by recovery at atmospheric pressure (0.1 MPa) for 5, 10 and 15 min. We identified transcription factors and corresponding DNA and RNA motifs targeted in response to hydrostatic pressure. Moreover, we observed that different motif elements are present in the promoters of induced or repressed genes during HHP treatment. Overall, as we have already published, mild HHP treatment to wild yeast cells provides multiple protection mechanisms, and this study suggests that the TFs and motifs identified as responding to HHP may be informative for a wide range of other biotechnological and industrial applications, such as fermentation, that may utilize HHP treatment.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Presión Hidrostática , Análisis por Micromatrices , ARN de Hongos/genética
7.
Mol Cell ; 38(3): 345-55, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20471941

RESUMEN

Eukaryotic cell proliferation is controlled by growth factors and essential nutrients, in the absence of which cells may enter into a quiescent (G(0)) state. In yeast, nitrogen and/or carbon limitation causes downregulation of the conserved TORC1 and PKA signaling pathways and, consequently, activation of the PAS kinase Rim15, which orchestrates G(0) program initiation and ensures proper life span by controlling distal readouts, including the expression of specific genes. Here, we report that Rim15 coordinates transcription with posttranscriptional mRNA protection by phosphorylating the paralogous Igo1 and Igo2 proteins. This event, which stimulates Igo proteins to associate with the mRNA decapping activator Dhh1, shelters newly expressed mRNAs from degradation via the 5'-3' mRNA decay pathway, thereby enabling their proper translation during initiation of the G(0) program. These results delineate a likely conserved mechanism by which nutrient limitation leads to stabilization of specific mRNAs that are critical for cell differentiation and life span.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Fase de Descanso del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Carbono/metabolismo , Proteínas de Ciclo Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Glucosa/deficiencia , Proteínas de Choque Térmico/genética , Mutación , Nitrógeno/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 106(47): 19928-33, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19901341

RESUMEN

Genes required for ribosome biogenesis in yeast, referred to collectively as the Ribi regulon, are tightly regulated in coordination with nutrient availability and cellular growth rate. The promoters of a significant fraction of Ribi genes contain one or more copies of the RNA polymerases A and C (PAC) and/or ribosomal RNA-processing element (RRPE) motifs. Prompted by recent studies showing that the yeast protein Dot6 and its homolog Tod6 can bind to a PAC motif sequence in vitro and are required for efficient Ribi gene repression in response to heat shock, we have examined the role of Dot6 and Tod6 in nutrient control of Ribi gene expression in vivo. Our results indicate that PAC sites function as Dot6/Tod6-dependent repressor elements in vivo. Moreover, Dot6 and Tod6 mediate different nutrient signals, with Tod6 responsible for efficient repression of Ribi genes after inhibition of the nitrogen-sensitive TORC1 pathway and Dot6 responsible for repression after inhibition of the carbon-sensitive protein kinase A signaling pathway. Consistently, Dot6 and Tod6 are required for efficient repression of Ribi gene repression immediately after nutrient deprivation and for successful adaptation to nutrient limitation. Thus, these results establish Dot6/Tod6 as a direct link between nutrient availability, Ribi gene regulation, and growth control.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Represoras/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulón , Proteínas Represoras/genética , Ribosomas/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Inanición , Factores de Transcripción/genética
9.
PLoS Genet ; 5(4): e1000449, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19360118

RESUMEN

Modern computational methods are revealing putative transcription-factor (TF) binding sites at an extraordinary rate. However, the major challenge in studying transcriptional networks is to map these regulatory element predictions to the protein transcription factors that bind them. We have developed a microarray-based profiling of phage-display selection (MaPS) strategy that allows rapid and global survey of an organism's proteome for sequence-specific interactions with such putative DNA regulatory elements. Application to a variety of known yeast TF binding sites successfully identified the cognate TF from the background of a complex whole-proteome library. These factors contain DNA-binding domains from diverse families, including Myb, TEA, MADS box, and C2H2 zinc-finger. Using MaPS, we identified Dot6 as a trans-active partner of the long-predicted orphan yeast element Polymerase A & C (PAC). MaPS technology should enable rapid and proteome-scale study of bi-molecular interactions within transcriptional networks.


Asunto(s)
Bacteriófagos/genética , ADN/metabolismo , Proteínas Fúngicas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Factores de Transcripción/genética , Levaduras/metabolismo , Sitios de Unión , ADN/química , ADN/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Biblioteca de Genes , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Levaduras/química , Levaduras/genética
10.
Mol Syst Biol ; 5: 245, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19225458

RESUMEN

Addition of glucose to yeast cells increases their growth rate and results in a massive restructuring of their transcriptional output. We have used microarray analysis in conjunction with conditional mutations to obtain a systems view of the signaling network responsible for glucose-induced transcriptional changes. We found that several well-studied signaling pathways-such as Snf1 and Rgt-are responsible for specialized but limited responses to glucose. However, 90% of the glucose-induced changes can be recapitulated by the activation of protein kinase A (PKA) or by the induction of PKB (Sch9). Blocking signaling through Sch9 does not interfere with the glucose response, whereas blocking signaling through PKA does. We conclude that both Sch9 and PKA regulate a massive, nutrient-responsive transcriptional program promoting growth, but that they do so in response to different nutritional inputs. Moreover, activating PKA completely recapitulates the transcriptional growth program in the absence of any increase in growth or metabolism, demonstrating that activation of the growth program results solely from the cell's perception of its nutritional status.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glucosa/fisiología , Transducción de Señal , Transcripción Genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Levaduras
11.
Annu Rev Genet ; 42: 27-81, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18303986

RESUMEN

Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.


Asunto(s)
Saccharomyces/metabolismo , Aminoácidos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN , Genes Fúngicos , Glucosa/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Nitrógeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces/citología , Saccharomyces/genética , Saccharomyces/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Transactivadores/metabolismo , Factores de Transcripción , Transcripción Genética , Proteínas ras/metabolismo
12.
Mol Cell ; 26(5): 663-74, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17560372

RESUMEN

The Target of Rapamycin (TOR) protein is a Ser/Thr kinase that functions in two distinct multiprotein complexes: TORC1 and TORC2. These conserved complexes regulate many different aspects of cell growth in response to intracellular and extracellular cues. Here we report that the AGC kinase Sch9 is a substrate of yeast TORC1. Six amino acids in the C terminus of Sch9 are directly phosphorylated by TORC1. Phosphorylation of these residues is lost upon rapamycin treatment as well as carbon or nitrogen starvation and transiently reduced following application of osmotic, oxidative, or thermal stress. TORC1-dependent phosphorylation is required for Sch9 activity, and replacement of residues phosphorylated by TORC1 with Asp/Glu renders Sch9 activity TORC1 independent. Sch9 is required for TORC1 to properly regulate ribosome biogenesis, translation initiation, and entry into G0 phase, but not expression of Gln3-dependent genes. Our results suggest that Sch9 functions analogously to the mammalian TORC1 substrate S6K1 rather than the mTORC2 substrate PKB/Akt.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Genes Fúngicos , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Presión Osmótica , Estrés Oxidativo , Fosforilación , Biosíntesis de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulón , Fase de Descanso del Ciclo Celular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Sirolimus/farmacología , Temperatura , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...